A comprehensive modeling approach for intricate bearing flows within a rotary energy recovery device
Mohammed A. Elhashimi-Khalifa,
Arnav Deshmukh,
Chinmay Deshpande and
Gunnar Maples
Renewable and Sustainable Energy Reviews, 2025, vol. 213, issue C
Abstract:
Energy recovery devices (ERDs), are increasingly adopted across various industries due to escalating global concerns regarding finite energy resources and associated environmental impacts. Pressure exchangers (PX), a common ERD, is an integral part of key industries like desalination and is increasingly prevalent in other energy-intensive industries like refrigeration. PXs play pivotal roles in reducing energy consumption by harnessing waste hydraulic energy within working cycles. The efficiency and recoverable energy in PXs are significantly influenced by internal leakages. While leakage is well-understood in individual bearings and mechanical seals, leakage within PXs remains a complex phenomenon due to the interdependency of multiple axial and radial leakage flows. Aligned with UN SDG 7 (Affordable and Clean Energy), PXs enhance the efficiency of critical technologies, resulting in lower energy consumption, improved system performance, and a reduction in GHG emissions. This reduction in emissions also plays a key role in supporting SDG 13 (Climate Action). Therefore, optimizing PX efficiency and minimizing losses are essential to maximizing their impact. This article provides a comprehensive modeling approach to analyze leakages and properties variation within bearings in PXs. Furthermore, a global optimization search methodology was developed to capture the interconnected nature of leakages and properties at the leakages intersection zones. Models for both radial and annular leakages within PXs were developed to analyze flow rates and variation of properties within bearings. These models avoid idealized assumptions and are based on real fluids. Models’ predictions for properties variation within bearings and pressures within leakage intersection zones were found to be in a good agreement with CFD and experimental validation.
Date: 2025
References: Add references at CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S1364032125001406
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:rensus:v:213:y:2025:i:c:s1364032125001406
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/bibliographic
http://www.elsevier. ... 600126/bibliographic
DOI: 10.1016/j.rser.2025.115467
Access Statistics for this article
Renewable and Sustainable Energy Reviews is currently edited by L. Kazmerski
More articles in Renewable and Sustainable Energy Reviews from Elsevier
Bibliographic data for series maintained by Catherine Liu ().