Physics-informed explainable encoder-decoder deep learning for predictive estimation of building carbon emissions
Chao Chen,
Limao Zhang,
Cheng Zhou and
Yongqiang Luo
Renewable and Sustainable Energy Reviews, 2025, vol. 213, issue C
Abstract:
Building decarbonization is beneficial to improve energy efficiency and mitigate climate change worldwide, and it is necessary to accurately investigate building carbon emissions and identify the potential factors. A crucial challenge is that pioneer studies rarely explore the correlations between controllable parameters and building carbon emissions and are unable to estimate carbon emissions comprehensively. In this context, this work proposes a physics-informed encoder-decoder framework for predictive carbon emissions estimation. The input variables are transformed into sequences to extract essential features and time information in the encoder, where the decoder receives the sequence and makes a prediction. Simultaneously, the control-oriented physical laws are explored and integrated to update the conventional loss function. The proposed model has been applied to a high-rise commercial building in China. Results reveal that: (1) The model sees a significant prediction improvement by 9.24 % after considering physical laws and shows outstanding robustness under five dataset conditions; (2) The R2 for carbon emissions prediction is 0.963, while the accuracy for anomaly detection is 0.963; (3) Historical carbon emissions, supply water temperature and system operation status are the critical factors affecting carbon emissions. The proposed physics-informed deep learning model solves the performance dependencies on dataset size and can be directly used for control-oriented building modeling and decarbonization optimization.
Keywords: Physics-informed; Deep learning; Building carbon emissions; Predictive estimation; Model robustness (search for similar items in EconPapers)
Date: 2025
References: Add references at CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S1364032125001510
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:rensus:v:213:y:2025:i:c:s1364032125001510
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/bibliographic
http://www.elsevier. ... 600126/bibliographic
DOI: 10.1016/j.rser.2025.115478
Access Statistics for this article
Renewable and Sustainable Energy Reviews is currently edited by L. Kazmerski
More articles in Renewable and Sustainable Energy Reviews from Elsevier
Bibliographic data for series maintained by Catherine Liu ().