Dual-gate Temporal Fusion Transformer for estimating large-scale land surface solar irradiation
Xuan Liao,
Man Sing Wong and
Rui Zhu
Renewable and Sustainable Energy Reviews, 2025, vol. 214, issue C
Abstract:
An accurate estimation of land surface solar irradiation (LSSI) is crucial to address the solar intermittency for optimizing solar photovoltaic (PV) installation and mitigrating PV curtailment. This involves enhancing solar photovoltaic (PV) system efficiency by optimizing layout and maximizing solar energy capture and conversion. While deep learning methods have significantly improved the rapid and accurate estimation of solar irradiation, they face challenges in handling geographical heterogeneity and providing interpretable results. To address these challenges, this study proposes the Dual-gate Temporal Fusion Transformer (DGTFT), a novel interpretable deep learning network, to improve LSSI estimation. By integrating the Temporal Fusion Transformer with the Dual-gate Gated Residual Network and Dual-gate Multi-head Cross Attention, the optimal network achieved R2=0.93, MAE=0.022 (kWh/m2), RMSE=0.038 (kWh/m2), rRMSE=0.13, and nRMSE=0.048 through ablation experiments. When applied to datasets observed from Australia, China, and Japan, DGTFT outperformed traditional machine learning methods with a minimum R2 increase of 23.88%, MAE decrease of 43.18%, RMSE decrease of 9.09%, rRMSE decrease of 32.25%, and nRMSE decrease of 62.79%. Furthermore, the interpretability results of the DGTFT model indicate that clear-sky solar irradiation significantly contributed to the model’s performance from Australia and Japan; and the maximum temperature and humidity were the largest importance variables in the Chinese dataset. Accurately estimating LSSI, providing interpretable results, and generating continuous solar irradiation maps for large-scale areas, this study aids in quantifying solar potential and offers scientific guidance for the PV industry’s development.
Keywords: Dual-gate Temporal Fusion Transformer; Hourly land surface solar irradiation estimation; Interpretable deep learning network; GeoAI; Geographical heterogeneity (search for similar items in EconPapers)
Date: 2025
References: Add references at CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S1364032125001832
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:rensus:v:214:y:2025:i:c:s1364032125001832
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/bibliographic
http://www.elsevier. ... 600126/bibliographic
DOI: 10.1016/j.rser.2025.115510
Access Statistics for this article
Renewable and Sustainable Energy Reviews is currently edited by L. Kazmerski
More articles in Renewable and Sustainable Energy Reviews from Elsevier
Bibliographic data for series maintained by Catherine Liu ().