A failure knowledge graph learning framework for offshore wind turbines with incomplete knowledge
Yi Ding,
Feng Zhu,
He Li,
Ajith Kumar Parlikad and
Min Xie
Renewable and Sustainable Energy Reviews, 2025, vol. 215, issue C
Abstract:
This study presents a novel framework for Failure Knowledge Graph (FKG) construction tailored for the safe operation and maintenance of offshore wind turbines. Specifically, Bidirectional Encoder Representations from Transformers (BERT) and Conditional Random Field (CRF) are combined for failure extraction, enhanced by iterative learning for failure data transfer from onshore to offshore wind turbines. Additionally, this framework incorporates a rule-based pseudo-label module and an innovative replacement-based pseudo-sample module to mitigate the impact of label errors and failure data imbalance during the iterative learning process. With the failure events extracted, the affiliate components and corresponding failure modes are identified to construct a tree-structured FKG automatically for offshore wind turbines. The feasibility and effectiveness of the proposed framework are validated by the presentation of an FKG regarding 313 offshore wind turbines recorded in the LGS-offshore dataset. Overall, the study provides the offshore wind sector with an intelligent framework for failure data analysis, presentation, and understanding and contributes to the safe operation of offshore wind turbines and wind farms.
Keywords: Offshore wind energy; Operation and maintenance; Failure knowledge graph; Knowledge transfer; Incomplete knowledge (search for similar items in EconPapers)
Date: 2025
References: Add references at CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S1364032125002345
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:rensus:v:215:y:2025:i:c:s1364032125002345
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/bibliographic
http://www.elsevier. ... 600126/bibliographic
DOI: 10.1016/j.rser.2025.115561
Access Statistics for this article
Renewable and Sustainable Energy Reviews is currently edited by L. Kazmerski
More articles in Renewable and Sustainable Energy Reviews from Elsevier
Bibliographic data for series maintained by Catherine Liu ().