EconPapers    
Economics at your fingertips  
 

Review of surrogate model assisted multi-objective design optimization of electrical machines: New opportunities and challenges

Liyang Liu, Zequan Li, Haoyu Kang, Yang Xiao, Lu Sun, Hang Zhao, Z.Q. Zhu and Yiming Ma

Renewable and Sustainable Energy Reviews, 2025, vol. 215, issue C

Abstract: This paper overviews surrogate model-assisted multi-objective design optimization techniques of electrical machines for efficient, accurate, and robust design optimization to ease design issues due to unprecedentedly increasing machine performance requirements. Firstly, the mechanism of surrogate-assisted modeling is introduced by comparing it with conventional physical modeling approaches. The relevant techniques are then categorized and subsequently reviewed in terms of the design of experiments, surrogate model construction, and multi-objective optimization algorithms. The potential application prospects for machine design optimization are highlighted. Finally, three surrogate-assisted modeling methods, i.e., transfer learning-based models, gradient sampling-based multi-fidelity models, and search space decay-based surrogate models, are quantitively compared by applying them to the design optimization of a five-phase permanent magnet synchronous machine.

Keywords: Surrogate model; Electrical machine; Optimization design; Design of experiments; Multi-objective optimization algorithms (search for similar items in EconPapers)
Date: 2025
References: Add references at CitEc
Citations:

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S1364032125002825
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:rensus:v:215:y:2025:i:c:s1364032125002825

Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/bibliographic
http://www.elsevier. ... 600126/bibliographic

DOI: 10.1016/j.rser.2025.115609

Access Statistics for this article

Renewable and Sustainable Energy Reviews is currently edited by L. Kazmerski

More articles in Renewable and Sustainable Energy Reviews from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-04-08
Handle: RePEc:eee:rensus:v:215:y:2025:i:c:s1364032125002825