Exploring the role of fracture networks in enhanced geothermal systems: Insights from integrated thermal-hydraulic-mechanical-chemical and wellbore dynamics simulations
Zhenqian Xue,
Zichao Wei,
Haoming Ma,
Zhe Sun,
Chengang Lu and
Zhangxin Chen
Renewable and Sustainable Energy Reviews, 2025, vol. 215, issue C
Abstract:
Hot dry rock (HDR) fracturing is a critical stage in the development of enhanced geothermal systems (EGS), and the pattern of an engineered fracture network plays a crucial role in cumulative heat recovery. However, current studies often lack completeness and accuracy when exploring the effects of various fracture networks, overlooking key factors such as chemical reactions, wellbore dynamics, and/or rock mechanical behaviors. This study develops combined thermal-hydraulic-mechanical-chemical (THMC) and wellbore heat loss models, for the first time, to evaluate EGS heat recovery under different vertical-fracture and shear-fracture networks. The results reveal an over 3.9 % variance in heat recovery between THMC and other coupled models, while wellbore heat loss accounts for approximately 7.7 % of the thermal power production, underscoring the significance of incorporating both complex reservoir mechanisms and wellbore heat loss in EGS assessments. In addition, heat recovery improves with increased fracture spacing and number but decreased conductivity. Among vertical-fracture networks, an interrupted complex vertical-fracture system achieves the highest electricity generation of 1119.0 GWh over 20 years of operation. Meanwhile, shear-fracture networks often perform better in heat extraction than vertical-fracture systems, with the case featuring more shear fractures and higher permeability showing the highest electricity output of 1136.7 GWh. Importantly, increasing a fracture number contributes an additional 20.2 GWh, compared to only a 2.2 GWh gain from higher permeability, highlighting the fracture number as the dominant factor in shear-fracture systems. However, due to the higher injection pressure requirements, shear fracturing is best suited for reservoirs with abundant natural fractures. Otherwise, an interrupted complex fracture system is the preferred alternative. This study significantly improves the understanding of EGS performance across different fracture patterns, offering valuable insights to operators for improved decision-making in EGS development.
Keywords: Enhanced geothermal system; Thermal-hydraulic-mechanical-chemical model; Discrete fracture network; Vertical-fracture networks; Shear-fracture networks (search for similar items in EconPapers)
Date: 2025
References: Add references at CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S1364032125003090
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:rensus:v:215:y:2025:i:c:s1364032125003090
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/bibliographic
http://www.elsevier. ... 600126/bibliographic
DOI: 10.1016/j.rser.2025.115636
Access Statistics for this article
Renewable and Sustainable Energy Reviews is currently edited by L. Kazmerski
More articles in Renewable and Sustainable Energy Reviews from Elsevier
Bibliographic data for series maintained by Catherine Liu ().