Assessment of the waste-to-energy potential for industrial steam supply and carbon emission reduction in Hainan, China
Xu Luo,
Xue Gong and
Jianjun Xia
Renewable and Sustainable Energy Reviews, 2025, vol. 217, issue C
Abstract:
As global population grows and urbanization accelerates, waste management becomes a major challenge worldwide. Energy recovery can play a key role in waste management, and its potential from municipal solid waste (MSW) is important in waste management planning. This study develops an assessment framework to evaluate the potential of waste-to-energy (WtE) technology for supplying industrial steam and reducing carbon emissions, supporting improvements in the energy efficiency of WtE systems in regions with limited space heating demand. The framework integrates MSW forecasting, energy system modeling, spatial demand–supply matching, and evaluation of technical, economic, and environmental performance. Hainan, China, serves as a case study to demonstrate its application. Data were collected through statistics, questionnaires, and field surveys to evaluate local MSW resources and industrial steam demand. MSW prediction and WtE models were constructed to estimate steam supply by 2030, followed by an evaluation of supply–demand matching and carbon reduction potential. The results showed that steam supplied by WtE plants can significantly reduce fossil fuel use and associated emissions in manufacturing, provided appropriate industrial heat demand exists. Spatial coordination of MSW collection can improve the alignment between waste supply and steam demand, and optimizing existing incentive structures can enhance economic viability and climate benefits. In the Hainan case, this approach can reduce carbon emissions from manufacturing plants by up to 87.1 %, and overall carbon emissions by 21.6 %. This study aims to inform future MSW management and industrial energy supply decisions, and contribute to reducing carbon emissions in global industrial operations.
Keywords: Waste-to-Energy; Industrial steam; Energy efficiency; Carbon emission reduction (search for similar items in EconPapers)
Date: 2025
References: Add references at CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S1364032125004228
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:rensus:v:217:y:2025:i:c:s1364032125004228
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/bibliographic
http://www.elsevier. ... 600126/bibliographic
DOI: 10.1016/j.rser.2025.115749
Access Statistics for this article
Renewable and Sustainable Energy Reviews is currently edited by L. Kazmerski
More articles in Renewable and Sustainable Energy Reviews from Elsevier
Bibliographic data for series maintained by Catherine Liu ().