EconPapers    
Economics at your fingertips  
 

System boundary for embodied energy in buildings: A conceptual model for definition

Manish K. Dixit, Charles H. Culp and Jose L. Fernández-Solís

Renewable and Sustainable Energy Reviews, 2013, vol. 21, issue C, 153-164

Abstract: Buildings consume nearly 40% of global energy annually in their production, operation, maintenance, replacement and demolition stages. Energy consumed in their life cycle stages other than the operation is called life cycle embodied energy. Total life cycle energy constitutes the building's embodied and operational energy over its service life. Operational energy constitutes a relatively larger fraction of life cycle energy in a conventional building. However, with the emergence of larger number of low energy buildings the significance of embodied energy is expected to grow. Current embodied energy calculations exhibit problems of variation, inaccuracy and incompleteness. System boundary definition is a key parameter that differs across studies and causes these problems, as studies define their system boundary subjectively. Research studies have proposed various system boundary models that should be applied to the buildings for life cycle analysis; however, the extent of their boundary definition differs. This paper gathers and synthesizes relevant literature opinions to develop a comprehensive system boundary model that can be adopted while performing the life cycle energy analysis of a building. The purpose of developing this model is twofold. Firstly, it would provide a clear picture of the system boundary. Second, it would provide a model to quantify the embodied energy of a building. Three possible approaches to cover the proposed system boundary are also recommended.

Keywords: Embodied energy; Building life cycle energy; System boundary; Embodied energy parameters (search for similar items in EconPapers)
Date: 2013
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (26)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S1364032112007423
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:rensus:v:21:y:2013:i:c:p:153-164

Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/bibliographic
http://www.elsevier. ... 600126/bibliographic

DOI: 10.1016/j.rser.2012.12.037

Access Statistics for this article

Renewable and Sustainable Energy Reviews is currently edited by L. Kazmerski

More articles in Renewable and Sustainable Energy Reviews from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:rensus:v:21:y:2013:i:c:p:153-164