Integration of data-driven T-spherical fuzzy mathematical models for evaluation of electric vehicles: Response to electric vehicle market demands
Anirban Tarafdar,
Azharuddin Shaikh,
Dipayan Bhowmik,
Pinki Majumder,
Dragan Pamucar,
Vladimir Simic and
Uttam Kumar Bera
Renewable and Sustainable Energy Reviews, 2025, vol. 223, issue C
Abstract:
The rapid growth of the electric vehicle (EV) market necessitates advanced multi-criteria decision-making (MCDM) frameworks capable of integrating diverse quantitative and qualitative factors under uncertainty. Traditional MCDM approaches often struggle to capture the complexity and imprecision inherent in EV evaluations, particularly in dynamic contexts like India. To address this gap, this study proposes the T-Spherical Fuzzy (T-SF) MARCOS and T-SF MOORA methods, which utilize T-Spherical Fuzzy Numbers (T-SFNs) to enhance decision precision. T-SFNs extend conventional fuzzy models by independently incorporating degrees of membership, non-membership, and hesitation, enabling a more granular and realistic modeling of expert judgments. In the methodological construction, numerical criteria (e.g., battery capacity, charging time) are directly incorporated, while qualitative criteria (e.g., safety, comfort) are initially evaluated by four domain experts through linguistic assessments, subsequently transformed into T-SFNs for integrated evaluation and accurate criteria weighting. The developed models are then employed to rank ten EV alternatives across 21 comprehensive technical and consumer-centric criteria. Comparative analysis shows that T-SF MARCOS and T-SF MOORA achieve superior ranking accuracy, with a high mutual Pearson correlation of 0.71, while traditional SF methods like SF-WSM and SF-WASPAS exhibit negative correlations of −0.43 and −0.42, respectively. Sensitivity analyses—covering variations in criteria weights and additional criteria integration—confirm the robustness and stability of the frameworks, with rank reversal rates remaining below 10 % across all scenarios. This study presents a technically resilient, uncertainty-aware evaluation framework, offering strategic insights for advancing consumer-centric EV development.
Keywords: Electric vehicle (EV); T-spherical fuzzy numbers (T-SFNs); MARCOS; MOORA; MCDM; Sensitivity analysis; Qualitative and quantitative criteria; Consumer preferences (search for similar items in EconPapers)
Date: 2025
References: Add references at CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S1364032125006811
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:rensus:v:223:y:2025:i:c:s1364032125006811
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/bibliographic
http://www.elsevier. ... 600126/bibliographic
DOI: 10.1016/j.rser.2025.116008
Access Statistics for this article
Renewable and Sustainable Energy Reviews is currently edited by L. Kazmerski
More articles in Renewable and Sustainable Energy Reviews from Elsevier
Bibliographic data for series maintained by Catherine Liu ().