A review of electric load classification in smart grid environment
Kai-le Zhou,
Shan-lin Yang and
Chao Shen
Renewable and Sustainable Energy Reviews, 2013, vol. 24, issue C, 103-110
Abstract:
The load data in smart grid contains a lot of valuable knowledge, which is useful for both electricity producers and consumers. Load classification is an important issue in load data mining. A five-stage process model of load classification is constructed based on the summary and analysis of studies about load classification in smart grid environment. Then, the commonly used clustering methods for load classification are summarized and briefly reviewed, and the well-known evaluation methods for load classification are also introduced. Besides, the applications of load classification, including bad data identification and correction, load forecasting and tariff setting, are discussed. Finally, an example of load classification based on Fuzzy c-means (FCM) is presented.
Keywords: Load classification; Smart grid; Process model; Clustering methods and result evaluation methods; Load classification applications (search for similar items in EconPapers)
Date: 2013
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (42)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S1364032113001822
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:rensus:v:24:y:2013:i:c:p:103-110
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/bibliographic
http://www.elsevier. ... 600126/bibliographic
DOI: 10.1016/j.rser.2013.03.023
Access Statistics for this article
Renewable and Sustainable Energy Reviews is currently edited by L. Kazmerski
More articles in Renewable and Sustainable Energy Reviews from Elsevier
Bibliographic data for series maintained by Catherine Liu ().