An overview of fuel management in direct methanol fuel cells
M.Z.F. Kamaruddin,
S.K. Kamarudin,
W.R.W. Daud and
M.S. Masdar
Renewable and Sustainable Energy Reviews, 2013, vol. 24, issue C, 557-565
Abstract:
Fuel cells were an important technology that could be used for a variety of power applications. The direct methanol fuel cell (DMFC) was a promising candidate for powering portable electronic devices such as laptops, digital cameras and cell phones. Compared with conventional batteries, DMFCs could provide a higher power density with a longer lifetime and almost instant recharging. However, many issues related to the design, fabrication and operation of miniaturised DMFC power systems remain unsolved. Fuel delivery was a key issue in determining the performance of a DMFC. To achieve the desired performance, an efficient fuel delivery system was required to provide an adequate amount of fuel for consumption and to remove the carbon dioxide generated in the fuel-cell devices. This paper presented a detailed description of various fuel flow-field designs for DMFCs and their respective advantages. This paper also discussed the current approaches and challenges in existing fuel delivery and fuel storage systems, including active and passive DMFCs and micro-fluidic systems. The commercialisation of DMFCs with storage was presented.
Keywords: Direct methanol fuel cell; Flow-field design; Fuel delivery system; Fuel storage (search for similar items in EconPapers)
Date: 2013
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (7)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S136403211300172X
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:rensus:v:24:y:2013:i:c:p:557-565
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/bibliographic
http://www.elsevier. ... 600126/bibliographic
DOI: 10.1016/j.rser.2013.03.013
Access Statistics for this article
Renewable and Sustainable Energy Reviews is currently edited by L. Kazmerski
More articles in Renewable and Sustainable Energy Reviews from Elsevier
Bibliographic data for series maintained by Catherine Liu ().