Decomposition analysis: Change of carbon dioxide emissions in the Chinese textile industry
Boqiang Lin () and
Mohamed Moubarak
Renewable and Sustainable Energy Reviews, 2013, vol. 26, issue C, 389-396
Abstract:
We analyzed the change of energy-related carbon dioxide (CO2) emissions in the Chinese textile industry from 1986 to 2010. Decomposition analysis based on Logarithmic Mean Divisia Index method was applied and the study period was split into five time intervals for easier data management. Results show that industrial activity and energy intensity were the main determinants of change in carbon dioxide emissions. Industrial activity was the major factor that contributed to the increase of CO2 emissions. Energy intensity had a volatile trend interchanging intervals of growth (increasing and decreasing) along the study period. Furthermore, energy mix and carbon intensity equally decreased the CO2 emissions. Industrial scale, despite limited effect also contributed to the increase of CO2 emissions. In the meantime, while industrial output in the Chinese textile industry increased annually by 5% from 1986 to 2010, energy consumption grew by 4% with corresponding increase of CO2 emissions by 2%. Finally, we provide policy suggestions that may be adopted to significantly cut down CO2 emissions from the Chinese textile industry.
Keywords: Textile industry; CO2 emissions; Decomposition (search for similar items in EconPapers)
Date: 2013
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (42)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S1364032113003572
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:rensus:v:26:y:2013:i:c:p:389-396
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/bibliographic
http://www.elsevier. ... 600126/bibliographic
DOI: 10.1016/j.rser.2013.05.054
Access Statistics for this article
Renewable and Sustainable Energy Reviews is currently edited by L. Kazmerski
More articles in Renewable and Sustainable Energy Reviews from Elsevier
Bibliographic data for series maintained by Catherine Liu ().