EconPapers    
Economics at your fingertips  
 

Turbulent inflow characteristics for hydrokinetic energy conversion in rivers

V.S. Neary, B. Gunawan and D.C. Sale

Renewable and Sustainable Energy Reviews, 2013, vol. 26, issue C, 437-445

Abstract: Marine and hydrokinetic technologies, which convert kinetic energy from currents in open-channel flows to electricity, require inflow characteristics (e.g. mean velocity and turbulence intensity profiles) for their siting, design, and evaluation. The present study reviews mean velocity and turbulence intensity profiles reported in the literature for open-channel flows to gain a better understanding of the range of current magnitudes and longitudinal turbulence intensities that these technologies may be exposed to. We compare 47 measured vertical profiles of mean current velocity and longitudinal turbulence intensity (normalized by the shear velocity) that have been reported for medium-large rivers, a large canal, and laboratory flumes with classical models developed for turbulent flat plate boundary layer flows. The comparison suggests that a power law (with exponent, 1/a=1/6) and a semi-theoretical exponential decay model can be used to provide first-order approximations of the mean velocity and turbulence intensity profiles in rivers suitable for current energy conversion. Over the design life of a current energy converter, these models can be applied to examine the effects of large spatiotemporal variations of river flow depth on inflow conditions acting over the energy capture area. Significant engineering implications on current energy converter structural loads, annual energy production, and cost of energy arise due to these spatiotemporal variations in the mean velocity, turbulence intensity, hydrodynamic force, and available power over the energy capture area.

Keywords: Open channel flows; Turbulence characterization; Hydrokinetic turbines; Resource assessment (search for similar items in EconPapers)
Date: 2013
References: View complete reference list from CitEc
Citations: View citations in EconPapers (11)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S1364032113003365
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:rensus:v:26:y:2013:i:c:p:437-445

Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/bibliographic
http://www.elsevier. ... 600126/bibliographic

DOI: 10.1016/j.rser.2013.05.033

Access Statistics for this article

Renewable and Sustainable Energy Reviews is currently edited by L. Kazmerski

More articles in Renewable and Sustainable Energy Reviews from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:rensus:v:26:y:2013:i:c:p:437-445