EconPapers    
Economics at your fingertips  
 

Energy, exergy and thermo-economic analysis of solar distillation systems: A review

K.R. Ranjan and S.C. Kaushik

Renewable and Sustainable Energy Reviews, 2013, vol. 27, issue C, 709-723

Abstract: Desalinated water, the final product of a solar distillation system, is useful for drinking purpose, community services, industry and agriculture on a small scale. It is expensive and may be considered as an industrial product. In the present communication, it has been tried to collect information about the ongoing research activities in the field of solar distillation system with the aim to enhance productivity and efficiency through an effective thermodynamic tool i.e. energy and exergy analysis, especially of the solar stills, similar to its wide application in complex thermal systems such as steam or gas turbine, boiler and cogeneration systems. Thermodynamic models for the energy and exergy analysis have been presented based on the fundamental heat transfer correlations in literatures for the simple basin type solar stills. Energy efficiency and productivity of the conventional solar stills is found to be low in the range of 20–46% and less than 6L/m2/day, respectively, for most cases, even under optimized operating conditions. The exergetic efficiencies are estimated to be between 19% and 26% for a triple effect system, 17–20% for a double effect system, and less than 5% for a single effect system. Productivity increases significantly by the use of integrated solar stills with better efficiency. The overall energy and exergy efficiency of the integrated systems rises up to 62% and 8.5%, respectively, using single effect solar stills. An attempt has also been made to review works on economic and thermo-economic analysis of solar stills. The cost of desalination through solar stills is reported in the range of US$0.014 to 0.237/L. It decreases further with increase in efficiency. It is observed that integrated solar desalination systems and technologies will be better choice than the conventional solar distillation systems for rural as well as urban areas blessed with sufficient sunshine.

Keywords: Freshwater; Solar distillation systems; Energy and exergy analysis; Efficiency; Productivity; Solar energy; Thermo-economic analysis (search for similar items in EconPapers)
Date: 2013
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (18)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S136403211300470X
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:rensus:v:27:y:2013:i:c:p:709-723

Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/bibliographic
http://www.elsevier. ... 600126/bibliographic

DOI: 10.1016/j.rser.2013.07.025

Access Statistics for this article

Renewable and Sustainable Energy Reviews is currently edited by L. Kazmerski

More articles in Renewable and Sustainable Energy Reviews from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:rensus:v:27:y:2013:i:c:p:709-723