Multi-horizon solar radiation forecasting for Mediterranean locations using time series models
Cyril Voyant,
Christophe Paoli,
Marc Muselli and
Marie-Laure Nivet
Renewable and Sustainable Energy Reviews, 2013, vol. 28, issue C, 44-52
Abstract:
Considering the grid manager′s point of view, needs in terms of prediction of intermittent energy like the photovoltaic resource can be distinguished according to the considered horizon: following days (d+1, d+2 and d+3), next day by hourly step (h+24), next hour (h+1) and next few minutes (m+5 e.g.). Through this work, we have identified methodologies using time series models for the prediction horizon of global radiation and photovoltaic power. What we present here is a comparison of different predictors developed and tested to propose a hierarchy. For horizons d+1 and h+1, without advanced ad hoc time series pre-processing (stationarity) we find it is not easy to differentiate between autoregressive moving average (ARMA) and multilayer perceptron (MLP). However we observed that using exogenous variables improves significantly the results for MLP. We have shown that the MLP were more adapted for horizons h+24 and m+5. In summary, our results are complementary and improve the existing prediction techniques with innovative tools: stationarity, numerical weather prediction combination, MLP and ARMA hybridization, multivariate analysis, time index, etc.
Keywords: Time series; Artificial neural networks; Stationarity; Autoregressive moving average; Prediction; Global radiation; Hybrid model (search for similar items in EconPapers)
Date: 2013
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (15)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S1364032113005030
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:rensus:v:28:y:2013:i:c:p:44-52
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/bibliographic
http://www.elsevier. ... 600126/bibliographic
DOI: 10.1016/j.rser.2013.07.058
Access Statistics for this article
Renewable and Sustainable Energy Reviews is currently edited by L. Kazmerski
More articles in Renewable and Sustainable Energy Reviews from Elsevier
Bibliographic data for series maintained by Catherine Liu ().