High-efficiency thermodynamic power cycles for concentrated solar power systems
Marc T. Dunham and
Brian D. Iverson
Renewable and Sustainable Energy Reviews, 2014, vol. 30, issue C, 758-770
Abstract:
This paper provides a review of high-efficiency thermodynamic cycles and their applicability to concentrating solar power systems, primarily focusing on high-efficiency single and combined cycles. Novel approaches to power generation proposed in the literature are also highlighted. The review is followed by analyses of promising candidates, including regenerated He-Brayton, regenerated CO2-Brayton, CO2 recompression Brayton, steam Rankine, and CO2–ORC combined cycle. Steam Rankine is shown to offer higher thermal efficiencies at temperatures up to about 600°C but requires a change in materials for components above this temperature. Above this temperature, CO2 recompression Brayton cycles are shown to have very high thermal efficiency, potentially even exceeding 60% at 30MPa maximum pressure and above 1000°C maximum temperature with wet cooling. An estimate of a combined receiver and power cycle operating temperature is provided for the cycles considered and compared to the traditional approach of optimization based on the Carnot efficiency. It is shown that the traditional approach to optimizing the receiver and turbine inlet temperatures based on Carnot is generally not sufficient, leading to an optimum temperature shift of more than 100°C from the Carnot case under various conditions.
Keywords: CSP; High-efficiency thermodynamic cycles; Solar thermal; Solar thermodynamics; Brayton; Rankine; CO2 recompression (search for similar items in EconPapers)
Date: 2014
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (53)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S1364032113007594
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:rensus:v:30:y:2014:i:c:p:758-770
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/bibliographic
http://www.elsevier. ... 600126/bibliographic
DOI: 10.1016/j.rser.2013.11.010
Access Statistics for this article
Renewable and Sustainable Energy Reviews is currently edited by L. Kazmerski
More articles in Renewable and Sustainable Energy Reviews from Elsevier
Bibliographic data for series maintained by Catherine Liu ().