Factors affecting basin type solar still productivity: A detailed review
Ali. F. Muftah,
M.A. Alghoul,
Ahmad Fudholi,
M.M. Abdul-Majeed and
K. Sopian
Renewable and Sustainable Energy Reviews, 2014, vol. 32, issue C, 430-447
Abstract:
Reasonable amounts of fresh water can be produced via inexpensive and sturdy solar stills in places that are exposed to solar radiation and have a brackish water. This work intends to analyze the many studies on factors that affect the performance of solar stills. The results showed that the distillation productivity of solar stills are significantly influenced by ambient conditions (e.g., ambient temperature, insolation, wind velocity, dust and cloud cover), operating conditions (e.g., depth of water, various dyes, salt concentration and inlet temperature of water), and design conditions (e.g., different passive/active designs of solar stills, slope of the cover, materials selection, storing materials, reflectors, insulation, gap distance and sun tracking system). It was also determined that the performance of solar stills was improved through the increase in solar radiation, ambient air temperature, wind speed, and water absorptivity. This also rings through with the decrease in water depth, thickness of cover, gap distance between water surface and condensing cover. It was also determined that both internal and external reflectors are capable of increasing the amount of absorbed solar radiation on the basin liner. The potential output of a basin type still can potentially increase to almost 70–100%. On top of this, the utilization of a sun tracking system was determined to be way more effective in improving the performance of solar still. This translate to the fact that solar stills being able to produce potable water at a very economical cost. Due to the existence of different methods of cost estimation, it is not possible to determine a universal, comparable price per technology; the cost per liter of distilled water obtained from the basin type solar still is ranged from 0.035 to 0.074$/liter. This study proved the fact that distillation productivity of solar still is heavily influenced by climatic, operational, and design parameters. Its output can be further improved via operational and design conditions, as climatic conditions are beyond our control.
Keywords: Solar; Distillation; Basin type still; Climatic-design-operational parameters (search for similar items in EconPapers)
Date: 2014
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (14)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S1364032114000070
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:rensus:v:32:y:2014:i:c:p:430-447
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/bibliographic
http://www.elsevier. ... 600126/bibliographic
DOI: 10.1016/j.rser.2013.12.052
Access Statistics for this article
Renewable and Sustainable Energy Reviews is currently edited by L. Kazmerski
More articles in Renewable and Sustainable Energy Reviews from Elsevier
Bibliographic data for series maintained by Catherine Liu ().