Energy input, carbon intensity and cost for ethanol produced from farmed seaweed
Aaron Philippsen,
Peter Wild and
Andrew Rowe
Renewable and Sustainable Energy Reviews, 2014, vol. 38, issue C, 609-623
Abstract:
Macroalgae, commonly known as seaweed, has received significant interest as a potential source of ethanol because of its fast growth, significant sugar content and successful lab-scale conversion to ethanol. Issues such as energy input in seaweed conversion, lifecycle emissions, global production potential and cost have received limited attention. To address this gap, a well-to-tank model of ethanol production from brown seaweed is developed and applied to the case of ethanol production from Saccharina latissima in British Columbia, Canada. Animal feed is proposed as a co-product and co-product credits are estimated. In the case considered, seaweed ethanol is found to have an energy return on invested (EROI) of 1.7 and a carbon intensity (CI) of 10.8gCO2eMJ−1. Ethanol production from conventionally farmed seaweed could cost less than conventional ethanol and be produced on a scale comparable to 1% of global gasoline production. A drying system is required in regions such as British Columbia that require seasonal seaweed storage due to a limited harvest season. The results are significantly influenced by variations in animal feed processing energy, co-product credit value, seaweed composition, the value of seaweed animal feed and the cost of seaweed farming. We find EROI ranges from 0.64 to 26.7, CI from 33 to −41gCO2eMJ−1 and ethanol production is not financially viable without animal feed production in some scenarios.
Keywords: Seaweed; Macroalgae; Ethanol; Carbon intensity; EROI; Cost (search for similar items in EconPapers)
Date: 2014
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (4)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S136403211400447X
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:rensus:v:38:y:2014:i:c:p:609-623
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/bibliographic
http://www.elsevier. ... 600126/bibliographic
DOI: 10.1016/j.rser.2014.06.010
Access Statistics for this article
Renewable and Sustainable Energy Reviews is currently edited by L. Kazmerski
More articles in Renewable and Sustainable Energy Reviews from Elsevier
Bibliographic data for series maintained by Catherine Liu ().