A modular optimisation model for reducing energy consumption in large scale building facilities
Ioan Petri,
Haijiang Li,
Yacine Rezgui,
Yang Chunfeng,
Baris Yuce and
Bejay Jayan
Renewable and Sustainable Energy Reviews, 2014, vol. 38, issue C, 990-1002
Abstract:
With the pressing regulatory requirement to increase energy efficiency in our built environment, significant researching efforts have been recently directed towards energy optimisation with the overall objective of reducing energy consumption. Energy simulation and optimisation identify a class of applications that demand high performance processing power in order to be realised within a feasible time-frame. The problem becomes increasingly complex when undertaking such energy simulation and optimisation in large scale buildings such as sport facilities where the generation of optimal set points can be timing inefficient.
Keywords: Energy optimisation; Building simulation; Genetic algorithm; Artificial neural network; High performance computing (search for similar items in EconPapers)
Date: 2014
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (10)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S1364032114004961
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:rensus:v:38:y:2014:i:c:p:990-1002
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/bibliographic
http://www.elsevier. ... 600126/bibliographic
DOI: 10.1016/j.rser.2014.07.044
Access Statistics for this article
Renewable and Sustainable Energy Reviews is currently edited by L. Kazmerski
More articles in Renewable and Sustainable Energy Reviews from Elsevier
Bibliographic data for series maintained by Catherine Liu ().