EconPapers    
Economics at your fingertips  
 

Quantizing the deterministic nonlinearity in wind speed time series

Daryanti Haidar () and Fatemeh Marzbani

Renewable and Sustainable Energy Reviews, 2014, vol. 39, issue C, 1143-1154

Abstract: Linear models are capable of capturing the Linear Deterministic (LD) component of the time series. In order to benefit from both Nonlinear Deterministic (ND) and LD components during the prediction procedure, it is necessary to employ nonlinear models. The complexity of the prediction algorithm increases when nonlinear models are utilized. Hence, before applying nonlinear models the presence of nonlinear component should be confirmed. Although surrogate data technique uses various tests to indicate the nonlinearity, in many cases its test results are different and in conflict with each other. The reason is time series include LD and ND components together and giving a strict answer about nonlinearity cannot be applicable. Here instead of such a strict answer, by quantizing the ND component, a new index (a number between 0 and 1) is proposed (the closer to 1 the more ND components). In this method first we use ARMA models. The residual series is used to calculate the proposed index which it contains all components of the original series except LD. The proposed procedure is applied to three different case studies. Furthermore, the performance of some nonlinear prediction methods (Markov, Grey, Grey–Markov, EMD–Grey, NARnet and ARMAX) is compared with the proposed index.

Keywords: Wind speed; ARMA; Surrogate data; Nonlinear analysis; Markov; Grey; Empirical Mode Decomposition (search for similar items in EconPapers)
Date: 2014
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (12)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S1364032114005826
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:rensus:v:39:y:2014:i:c:p:1143-1154

Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/bibliographic
http://www.elsevier. ... 600126/bibliographic

DOI: 10.1016/j.rser.2014.07.130

Access Statistics for this article

Renewable and Sustainable Energy Reviews is currently edited by L. Kazmerski

More articles in Renewable and Sustainable Energy Reviews from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-31
Handle: RePEc:eee:rensus:v:39:y:2014:i:c:p:1143-1154