Melting and convection of phase change materials in different shape containers: A review
Nabeel S. Dhaidan and
J.M. Khodadadi
Renewable and Sustainable Energy Reviews, 2015, vol. 43, issue C, 449-477
Abstract:
A review of analytical, numerical and experimental investigations of melting and ensuing convection of phase change materials within enclosures with different shapes commonly used for thermal energy storage is presented. The common shapes of the containers being rectangular cavities, spherical capsules, tubes or cylinders (vertical and horizontal depending on orientation of gravity) and annular cavities are covered. Studies focusing on melting within rectangular cavities are categorized into two groups. The first one is melting due to isothermal heating on one or more boundaries, whereas the second is the constant heat flux-assisted melting. Moreover, constrained and unconstrained melting in both spherical and horizontal cylindrical containers were discussed. The effects of the concentric geometry and location of the heating source on melting in horizontal annular spaces are presented. The review concentrated on elucidating the heat transfer mechanisms (conduction and convection) during the multiple stages of the melting process and the effects of these mechanisms on the liquid–solid interface shape and its progress, melting rate, charging time of the storage system, etc. The strength of buoyancy driven-convection varies greatly with the dimensionless Rayleigh or Stefan numbers and depends somewhat on the location of heat source and imposed boundary condition. High dimensionless numbers and/or side position of the heat source ensure the dominant role of natural convection melting, otherwise conduction will be responsible for major melting within the container. Furthermore, the geometrical parameters such as the aspect ratio in rectangular containers and vertical cylindrical ones, diameter or radius in spherical capsules and horizontal cylindrical vessels, and eccentricity in annular cavities are reviewed. In addition, the parameters affecting the thermal behavior of the melting process in various enclosures, i.e. the Nusselt, Rayleigh, Stefan, Prandtl and Fourier numbers and are reviewed.
Keywords: Annular containers; Cylindrical containers; Convection; Melting; Phase change materials; Spherical containers; Thermal energy storage (search for similar items in EconPapers)
Date: 2015
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (24)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S1364032114009484
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:rensus:v:43:y:2015:i:c:p:449-477
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/bibliographic
http://www.elsevier. ... 600126/bibliographic
DOI: 10.1016/j.rser.2014.11.017
Access Statistics for this article
Renewable and Sustainable Energy Reviews is currently edited by L. Kazmerski
More articles in Renewable and Sustainable Energy Reviews from Elsevier
Bibliographic data for series maintained by Catherine Liu ().