A review on hybrid wavelet regrouping particle swarm optimization neural networks for characterization of partial discharge acoustic signals
Nasir A. Al-geelani,
M. Afendi M. Piah and
Nouruddeen Bashir
Renewable and Sustainable Energy Reviews, 2015, vol. 45, issue C, 20-35
Abstract:
Partial discharges (PD) emit energy in several ways and in the process, electro-magnetic emissions in the form of radio waves, light and heat, audible and ultra-sonic acoustic emissions are produced. These emissions enable the detection, location, measurement and analysis of the PD activity. PD activity is a precursor to failure thus it is construed as fault activity that must be addressed to prevent unplanned power losses. To prevent these unplanned failures that could result in power and revenue losses, an intelligent model that can detect, identify and characterize acoustic signals due to partial discharge activity has been proposed. The model is capable of differentiating abnormal operating conditions from normal ones. This paper highlights some smart techniques which have recently been used to identify the partial discharges on electrical overhead network that will guarantee sustainable and reliable energy savings. Furthermore, the main focus of this review is on a hybrid algorithm combining particle swarm optimization (PSO) with a neural network, referred to as PSO-NN.
Keywords: Acoustic signal; Partial discharge; Wavelet transform; Neural networks; Particle swarm optimization; Signal processing (search for similar items in EconPapers)
Date: 2015
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S136403211500057X
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:rensus:v:45:y:2015:i:c:p:20-35
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/bibliographic
http://www.elsevier. ... 600126/bibliographic
DOI: 10.1016/j.rser.2015.01.047
Access Statistics for this article
Renewable and Sustainable Energy Reviews is currently edited by L. Kazmerski
More articles in Renewable and Sustainable Energy Reviews from Elsevier
Bibliographic data for series maintained by Catherine Liu ().