Enhanced waste to energy operability under feedstock uncertainty by synergistic flue gas recirculation and heat recuperation
Christos Aristeides Tsiliyannis
Renewable and Sustainable Energy Reviews, 2015, vol. 50, issue C, 1320-1337
Abstract:
Variations in quantities and composition of received wastes in waste to enegy (WTE) plants lead to throughput and power losses (lower profits). By disturbing the mean residence time of flue gases in the air-pollution-control-system they result in temperature and offgas flow variations affecting combustion efficiency and actual pollutant emissions. Besides energy savings, integration by flue gas heat recovery (FHR) in a heat exchanger (recuperator) enables maintaing high throughput under feedstock uncertainty (e.g. poor wastes). An effective method for reducing WTE atmospheric pollution, mainly NOx emissions, flue-gas-recirculation (FGR) – mass recirculation of a fraction of flue gases to the combustor – may be used for the same purpose. Both FHR and FGR are related to robustness issues, limiting the actual range and effect of manipulation. Recent results indicate that FHR and FGR have opposite effects on WTE performance – increasing FGR cools down the combustor, while FHR boosts up combustion. The present work demonstrates the possibility of improving operability of WTE facilities by combined use of FHR and FGR, utilizing multiple waste mixtures with uncertain feedrates, heating value, or composition. It brings forth a key dimensionless parameter, determining the direction and magnitude of the manipulation and leads to explicit expressions for the sensitivities of power production, throughput and capacity constraints with respect to FGR and FHR ratios. Synergistic use of FHR and FGR enables maximization of throughput and power production within the process capacity constraints, without detrimental effects on destruction efficiency or final emissions. A Case Study is analyzed for a facility under a public–private-partnership contract, with received waste ranging from a guaranteed minimum 150.000–200.000TPY and composition range: biodegradables 52–70% ww, recyclables (paper, plastics, metals, glass) 25–45% ww.
Keywords: Renewable energy; Waste uncertainty; Sustainable energy; Electricity from waste; Flue gas recirculation; Heat recuperation. (search for similar items in EconPapers)
Date: 2015
References: View complete reference list from CitEc
Citations: View citations in EconPapers (2)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S1364032115004293
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:rensus:v:50:y:2015:i:c:p:1320-1337
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/bibliographic
http://www.elsevier. ... 600126/bibliographic
DOI: 10.1016/j.rser.2015.04.159
Access Statistics for this article
Renewable and Sustainable Energy Reviews is currently edited by L. Kazmerski
More articles in Renewable and Sustainable Energy Reviews from Elsevier
Bibliographic data for series maintained by Catherine Liu ().