Adsorption working pairs for adsorption cooling chillers: A review based on adsorption capacity and environmental impact
Ahmed N. Shmroukh,
Ahmed Hamza H. Ali and
Shinichi Ookawara
Renewable and Sustainable Energy Reviews, 2015, vol. 50, issue C, 445-456
Abstract:
Adsorption working pairs are the vital main components in the adsorption refrigeration machines. Therefore, the key for the further development is focusing on the adsorption pairs, which lead to the improvement of the adsorption refrigeration machines. In this study, an overview of both classical and modern adsorption pairs of the adsorption refrigeration systems is presented, compared and summarized. It was found that the maximum adsorption capacity for the classical working pairs was 0.259kg/kg for activated carbon/methanol pair and that for the modern working pairs was 2kg/kg for maxsorbIII/R-134a pair. This study concluded that, further investigations are still necessary to improve the performance of the adsorption working pairs of adsorption cooling systems as well as to develop the adsorption pairs with higher sorption capacity while with low or no impact on environment, in order to build compact, efficient, reliable, and long-life adsorption chillers. It was additionally found that activated carbon powder adsorbent has not been paid much attention so far, and hence, the study and application of it are to be of great interest. Further researches need to be focused on designing the adsorption system that provides efficient heating and cooling for the adsorbent materials by distributing the adsorbent material over heat exchanger surface, to allow good heat and mass transfer between the adsorbent and the refrigerant.
Keywords: Adsorption; Adsorbent/adsorbate pairs; Refrigeration (search for similar items in EconPapers)
Date: 2015
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (13)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S1364032115004943
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:rensus:v:50:y:2015:i:c:p:445-456
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/bibliographic
http://www.elsevier. ... 600126/bibliographic
DOI: 10.1016/j.rser.2015.05.035
Access Statistics for this article
Renewable and Sustainable Energy Reviews is currently edited by L. Kazmerski
More articles in Renewable and Sustainable Energy Reviews from Elsevier
Bibliographic data for series maintained by Catherine Liu ().