Application of adaptive neuro-fuzzy methodology for estimating building energy consumption
Sareh Naji,
Shahaboddin Shamshirband (),
Hossein Basser,
Afram Keivani,
U. Johnson Alengaram,
Mohd Zamin Jumaat and
Dalibor Petković
Renewable and Sustainable Energy Reviews, 2016, vol. 53, issue C, 1520-1528
Abstract:
The huge demand for energy and construction materials has become an issue of great concern recently. The energy usage of buildings accounts for a large percentage of the total primary energy consumption. The total energy requirement of buildings is influenced by various factors, including environmental and climatic conditions, building envelope materials, insulation, etc. In this respect, estimating the operational energy of buildings is potentially helpful for architects and engineers in the early design and construction stages. In this study, the adaptive neuro-fuzzy inference system (ANFIS) is designed and adapted to estimate the energy consumption of buildings according to the main building envelope parameters, namely material thickness and insulation K-value. Up to 180 simulations using different material thickness values and insulation properties are carried out in EnergyPlus software in order to use for estimation. This soft computing methodology is implemented with Matlab/Simulink and the performance is investigated.
Keywords: Energy consumption; Residential buildings; Energy efficiency; Neuro-fuzzy; ANFIS (search for similar items in EconPapers)
Date: 2016
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (12)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S1364032115010321
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:rensus:v:53:y:2016:i:c:p:1520-1528
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/bibliographic
http://www.elsevier. ... 600126/bibliographic
DOI: 10.1016/j.rser.2015.09.062
Access Statistics for this article
Renewable and Sustainable Energy Reviews is currently edited by L. Kazmerski
More articles in Renewable and Sustainable Energy Reviews from Elsevier
Bibliographic data for series maintained by Catherine Liu ().