Combination of fungal and physicochemical processes for lignocellulosic biomass pretreatment – A review
Ehsan Shirkavand,
Saeid Baroutian,
Daniel J. Gapes and
Brent R. Young
Renewable and Sustainable Energy Reviews, 2016, vol. 54, issue C, 217-234
Abstract:
Biofuel production from lignocellulose has recently been gaining much more attention as a result. One major problem of using lignocellulosic materials for the production of biofuel is the low accessibility of cellulose to enzymes and microorganisms. Therefore, pretreatment of lignocellulose is a critical step in biofuel production from such materials. Of the pretreatments, fungal treatment has become an important process due to its low energy demands and selective degradation of lignin and hemicellulose. This capability comes from the unique enzymatic systems, cellulolytic and ligninolytic enzymes, especially in white rot fungi. The low energy demand of fungal pretreatment has generated interest in studying the applicability of fungal pretreatment for biofuel production from woody materials. The most significant drawback of fungal pretreatment is the lengthy time required for the process. Combining fungal pretreatment with other pretreatment methods might reduce the time necessary for the whole process to operate. It can also introduce cost-effectiveness. Thus combining fungal pretreatment with other physical and chemical methods has been recently contemplated. This paper provides a comprehensive review of current fungal pretreatments and feasibility for biofuel production, with a focus on combining fungal pretreatment with other methods. The advantages and disadvantages of all physical and chemical methods were also briefly reviewed. The applicability of the combination of fungal with other pretreatment methods has been considered in a number of recent publications. To be commercially attractive, both energy demand and processing time should be reduced. In terms of energy demand reduction, combined fungal physico-chemical pretreatment has been effective. However, the lengthy time taken for the whole process has not been significantly improved upon. A great deal of work is still required to be done regarding time reduction for the process (combined fungal-physico chemical pretreatment). Therefore, it seems to remain an open field for research and process development.
Keywords: Fungal pretreatment; Lignocellulose; Combined pretreatment; Biofuel (search for similar items in EconPapers)
Date: 2016
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (26)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S1364032115010783
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:rensus:v:54:y:2016:i:c:p:217-234
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/bibliographic
http://www.elsevier. ... 600126/bibliographic
DOI: 10.1016/j.rser.2015.10.003
Access Statistics for this article
Renewable and Sustainable Energy Reviews is currently edited by L. Kazmerski
More articles in Renewable and Sustainable Energy Reviews from Elsevier
Bibliographic data for series maintained by Catherine Liu ().