EconPapers    
Economics at your fingertips  
 

Photovoltaic electricity generator dynamic modeling methods for smart grid applications: A review

Sam Koohi-Kamalі, N.A. Rahim, H. Mokhlis and V.V. Tyagi

Renewable and Sustainable Energy Reviews, 2016, vol. 57, issue C, 131-172

Abstract: This paper presents a comprehensive review on mathematical modeling methods of photovoltaic (PV) solar cell/module/array which can be used for power system dynamic modeling purpose. The intermittent and non-linear properties of PV solar cells necessitate accurate modeling of such elements for power system studies. Large scale integration of photovoltaic distributed generation (PVDG) systems into the smart power grid can adversely affect the stability of whole network if the solar plant is not designed properly. A model of solar cell which can predict the PV system output precisely would be helpful to improve reliability and stability of the intelligent utility network. For the smart grid applications which integrate the rapidly growing technologies together with renewable resources, the suitable dynamic model of PV plant is very essential at preliminary evaluation steps. In this paper, a new classification is presented on existing PV cell/module/array modeling methods. Modeling techniques are categorized in two main classes, namely, circuitry based methods and equation based methods. The former class encompasses two sub-classes i.e. embedded function blocks (EFBs) and piecewise linear circuit (PLC) techniques. The second class also consists of two sub-classes i.e. analytical and numerical techniques. The characteristics of each class and its sub-classes are also analyzed and compared to others. Comparison between the methods in both categories indicates that the former class is easy to implement in power system simulation software. The latter class can be exploited to estimate parameters of solar cell in collaboration with EFBs method and vice versa. The second class is more accurate than the first although its computational burden is further. It is envisaged that this paper can serve researchers and designers who work in the field of solar power plant dynamic modeling as useful source of information.

Keywords: Renewable energy; Distributed generation; Solar PV plant; Power systems; Smart grid (search for similar items in EconPapers)
Date: 2016
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (6)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S1364032115015208
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:rensus:v:57:y:2016:i:c:p:131-172

Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/bibliographic
http://www.elsevier. ... 600126/bibliographic

DOI: 10.1016/j.rser.2015.12.137

Access Statistics for this article

Renewable and Sustainable Energy Reviews is currently edited by L. Kazmerski

More articles in Renewable and Sustainable Energy Reviews from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:rensus:v:57:y:2016:i:c:p:131-172