On the definition of cyber-physical resilience in power systems
Reza Arghandeh,
Alexandra von Meier,
Laura Mehrmanesh and
Lamine Mili
Renewable and Sustainable Energy Reviews, 2016, vol. 58, issue C, 1060-1069
Abstract:
Modern society relies heavily upon complex and widespread electric grids. In recent years, advanced sensors, intelligent automation, communication networks, and information technologies (IT) have been integrated into the electric grid to enhance its performance and efficiency. Integrating these new technologies has resulted in more interconnections and interdependencies between the physical and cyber components of the grid. Natural disasters and man-made perturbations have begun to threaten grid integrity more often. Urban infrastructure networks are highly reliant on the electric grid and consequently, the vulnerability of infrastructure networks to electric grid outages is becoming a major global concern. In order to minimize the economic, social, and political impacts of large-scale power system outages, the grid must be resilient in addition of being robust and reliable. The concept of a power system’s cyber-physical resilience centers around maintaining critical functionality of the system backbone in the presence of unexpected extreme disturbances. Resilience is a multidimensional property of the electric grid; it requires managing disturbances originating from physical component failures, cyber component malfunctions, and human attacks. In the electric grid community, there is not a clear and universally accepted definition of cyber-physical resilience. This paper focuses on the definition of resilience for the electric grid and reviews key concepts related to system resilience. This paper aims to advance the field not only by adding cyber-physical resilience concepts to power systems vocabulary, but also by proposing a new way of thinking about grid operation with unexpected extreme disturbances and hazards and leveraging distributed energy resources. The concepts of service availability and quality are not new, but many recognize the need of resilience in maintaining essential services to critical loads, for example to allow home refrigerators to operate for food conservation in the aftermath of a hurricane landfall. By providing a comprehensive definition of power system resilience, this paper paves the way for creating appropriate and effective resilience standards and metrics.
Keywords: Resilience; Power system; Cyber-physical system; Vulnerabilities; Smart grids; Microgrids (search for similar items in EconPapers)
Date: 2016
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (52)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S1364032115015762
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:rensus:v:58:y:2016:i:c:p:1060-1069
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/bibliographic
http://www.elsevier. ... 600126/bibliographic
DOI: 10.1016/j.rser.2015.12.193
Access Statistics for this article
Renewable and Sustainable Energy Reviews is currently edited by L. Kazmerski
More articles in Renewable and Sustainable Energy Reviews from Elsevier
Bibliographic data for series maintained by Catherine Liu ().