Computational intelligence in wave energy: Comprehensive review and case study
L. Cuadra,
S. Salcedo-Sanz,
J.C. Nieto-Borge,
E. Alexandre and
G. Rodríguez
Renewable and Sustainable Energy Reviews, 2016, vol. 58, issue C, 1223-1246
Abstract:
Wind-generated wave energy is a renewable energy source that exhibits a huge potential for sustainable growth. The design and deployment of wave energy converters at a given location require the prediction of the amount of available wave energy flux. This and other wave parameters can be estimated by means of Computational Intelligence techniques (Neural, Fuzzy, and Evolutionary Computation). This paper reviews those used in wave energy applications, both in the resource estimation and in the design and control of wave energy converters. In particular, most of the applications of Neural Computation techniques, considered here in a broad sense, focus on the prediction of a variety of wave energy parameters by means of Multilayer Perceptrons and, at a lesser extent, by Support Vector Machines, and Extreme Learning Machines. Fuzzy Computation is also applied to estimate wave parameters and control floating wave energy converter. Evolutionary Computation algorithms are used to estimate parameters and design wave energy collectors. We complete this paper with a case study that illustrates, for the first time to the best of our knowledge, the potential of hybridizing a Coral Reefs Optimization algorithm with an Extreme Learning Machine to tackle the problem of significant wave height reconstruction.
Keywords: Computational intelligence techniques; Wave energy; Renewable energy; Wave energy converters; Environmental impact (search for similar items in EconPapers)
Date: 2016
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (19)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S1364032115016366
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:rensus:v:58:y:2016:i:c:p:1223-1246
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/bibliographic
http://www.elsevier. ... 600126/bibliographic
DOI: 10.1016/j.rser.2015.12.253
Access Statistics for this article
Renewable and Sustainable Energy Reviews is currently edited by L. Kazmerski
More articles in Renewable and Sustainable Energy Reviews from Elsevier
Bibliographic data for series maintained by Catherine Liu ().