Analysis of ripple current, power losses and high efficiency of DC–DC converters for fuel cell power generating systems
M. Venkatesh Naik and
Paulson Samuel
Renewable and Sustainable Energy Reviews, 2016, vol. 59, issue C, 1080-1088
Abstract:
The voltage produced by the fuel cell (FC) device is unregulated and varies from 0.4 to 0.8V on full load to no-load respectively. When these devices are used in high voltage applications the DC–DC boost converters are required to boost the low FC voltage. In order to get the high voltage the high voltage gain with less duty cycles is preferred to ensure less conduction losses and device stresses. The FC devices are high current low voltage devices and draw the current with larger ripples in it. The conventional Boost converters are less efficient to integrate directly with the FC devices. For high performance FC applications employing multi phase interleaved converter topologies have gained much interest in recent years. In this paper the different DC–DC Converter topologies i.e., Boost Converter (BC), Multi Device Boost Converter (MDBC), Multi Phase Interleaved Boost Converters (MPIBC) and Multi Device Multi Phase Interleaved Boost Converters (MDMPIBC) are analyzed with respect to the ripple current reduction which is drawn by the fuel cell (FC) stack. Further, the total converter power losses are classified and analyzed in detail for individual converters under study. A 6000W, 180V PEMFC stack is developed in MATLAB/SIMULINK and the power converters under study are analyzed with respect to the their performance parameters like ripple current, size of passive components, power losses and system efficiency. The converters are compared for a constant rated fuel cell current flow through them, a fixed DC-Load across the converter is connected to make sure that the converters operate under rated fuel cell current conditions. All the converters performance are compared to each other and the superiority of multi phase and multi device technology is emphasized and the simulation results demonstrates that the MDMPIBC converter topologies are more efficient than the other converter topologies employed in high performance applications.
Keywords: Ripple current reduction; Fuel cell ripple current; Validation of DC–DC converters for fuel cell DGs (search for similar items in EconPapers)
Date: 2016
References: View complete reference list from CitEc
Citations: View citations in EconPapers (6)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S1364032116000599
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:rensus:v:59:y:2016:i:c:p:1080-1088
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/bibliographic
http://www.elsevier. ... 600126/bibliographic
DOI: 10.1016/j.rser.2016.01.029
Access Statistics for this article
Renewable and Sustainable Energy Reviews is currently edited by L. Kazmerski
More articles in Renewable and Sustainable Energy Reviews from Elsevier
Bibliographic data for series maintained by Catherine Liu ().