Photogalvanics: A sustainable and promising device for solar energy conversion and storage
Amulyacharya Malviya and
Prem Prakash Solanki
Renewable and Sustainable Energy Reviews, 2016, vol. 59, issue C, 662-691
Abstract:
Photogalvanic cells are based on the photogalvanic effect; provide an additional method on acquiring energy, converting sunlight into electricity and its storage. Production of potential between two electrodes separated by suitable substances in which the influence of light on the electrode potential is due to a photochemical process in the body of the electrolyte is termed as the Becquerel effect so called photogalvanic effect. In this review we have proposed suitable classification of solar cell based on the excitation (direct or indirect) of electron and semiconductor used, in which the photogalvanic cell has potential to revolutionize the existing solar cells due to its low cost and inherent storage capacity. Various type of photogalvanic effect has been discussed as linear photogalvanic, circular photogalvanic and photogalvanomagnetic effect. The main purpose of the paper is to review the results of research published related to this phenomenon and to propose the mechanism for the photocurrent generation in detail. Here, we have reviewed around 400 research articles/patents/reports/proceedings in the development of photogalvanic cells, from early stage to recently more efficient; considering electrolyte, electrode material and assembly set up. The results of electrical parameters (open circuit potential, short circuit current, power at power point, fill factor, conversion efficiency and storage capacity) of the photogalvanic cells containing dye, reductant and surfactants have given in a tabular form with comparison of more than 150 systems. A vast collection of photogalvanic systems and their electrical parameters have been scrutinized for further research work to enhance the electrical output and to make it commercially viable. In this paper, the primitive photogalvanic systems with iron–thionine to recent dye–reductant–surfactant system with specific reference to chronological and technological development in the cell have been discussed. We have also focused on the challenges and limitations in the field of photochemical conversion of solar energy and its storage.
Keywords: Photogalvanic cells; Photopotential; Photocurrent; Mechanism; Fill factor; Conversion efficiency; Storage capacity (search for similar items in EconPapers)
Date: 2016
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S1364032115016780
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:rensus:v:59:y:2016:i:c:p:662-691
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/bibliographic
http://www.elsevier. ... 600126/bibliographic
DOI: 10.1016/j.rser.2015.12.295
Access Statistics for this article
Renewable and Sustainable Energy Reviews is currently edited by L. Kazmerski
More articles in Renewable and Sustainable Energy Reviews from Elsevier
Bibliographic data for series maintained by Catherine Liu ().