Design methodologies for sizing a battery bank devoted to a stand-alone and electronically passive wind turbine system
Malek Belouda,
Amine Jaafar,
Bruno Sareni,
Xavier Roboam and
Jamel Belhadj
Renewable and Sustainable Energy Reviews, 2016, vol. 60, issue C, 144-154
Abstract:
In this paper, the authors investigate four original methodologies for sizing a battery bank inside a passive wind turbine system. This device interacts with wind and load cycles, especially for a stand-alone application. Generally, actual wind speed measurements are of long duration which leads to extensive processing time in a global optimization context requiring a wide number of system simulations. The first part of this article outlines two sizing methodologies based on a statistical approach for the sizing of the electrochemical storage device of a stand-alone passive wind turbine system. Two other efficient methodologies based on the synthesis of compact wind speed profiles by means of evolutionary algorithms are described in the second part of this paper. The results are finally discussed with regard to the relevance of the battery bank sizing and in terms of computation cost, this later issue being crucial to an Integrated Optimal Design (IOD) process.
Keywords: Passive wind turbine; Storage; Batteries; Inverse problem; Evolutionary algorithms; Hybrid system (search for similar items in EconPapers)
Date: 2016
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (4)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S1364032116001416
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:rensus:v:60:y:2016:i:c:p:144-154
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/bibliographic
http://www.elsevier. ... 600126/bibliographic
DOI: 10.1016/j.rser.2016.01.111
Access Statistics for this article
Renewable and Sustainable Energy Reviews is currently edited by L. Kazmerski
More articles in Renewable and Sustainable Energy Reviews from Elsevier
Bibliographic data for series maintained by Catherine Liu ().