A review on phase change material (PCM) for sustainable passive cooling in building envelopes
Hussein Akeiber,
Payam Nejat,
Muhd Zaimi Abd. Majid,
Mazlan A. Wahid,
Fatemeh Jomehzadeh,
Iman Zeynali Famileh,
John Kaiser Calautit,
Ben Richard Hughes and
Sheikh Ahmad Zaki
Renewable and Sustainable Energy Reviews, 2016, vol. 60, issue C, 1470-1497
Abstract:
The most significant threat that mankind faces in the 21th century is global warming. Buildings, which account for 40% of global energy consumption and greenhouse gas emissions, play a pivotal role in global warming. Estimates show that their destructive impact will grow by 1.8% per year through 2050, which indicates that future consumption and emissions will be worse than today. Therefore, the impact of cooling systems cannot be ignored, as they, along with ventilation and heating systems, account for 60% of the energy consumed in buildings. Passive cooling techniques are a promising alternative to conventional cooling systems. Of the various passive cooling strategies, thermal energy storage by means of latent heat is an efficient way to increase the thermal inertia of building envelopes, which would reduce temperature fluctuations, leading to the improved thermal comfort of occupants. Phase change materials (PCMs) with high density for thermal energy storage can be efficiently employed to this purpose. This paper reviews recent studies of the application of PCMs for passive cooling in buildings. From the literature, a comprehensive list of different organic, inorganic and eutectic PCMs appropriate for passive cooling in buildings are reviewed. Full-scale testing and numerical modeling were found to be the most popular investigative methods used for experimental and theoretical analysis of PCMs. The combination of these two methods can provide a detailed and valid technique for PCM investigations. Finally, incorporating PCMs into building walls with macro encapsulation was also a dominant interest in previous studies.
Keywords: Phase change material (PCM); Thermal energy storage; Passive cooling; Nano material; Building; Envelope (search for similar items in EconPapers)
Date: 2016
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (86)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S1364032116002719
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:rensus:v:60:y:2016:i:c:p:1470-1497
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/bibliographic
http://www.elsevier. ... 600126/bibliographic
DOI: 10.1016/j.rser.2016.03.036
Access Statistics for this article
Renewable and Sustainable Energy Reviews is currently edited by L. Kazmerski
More articles in Renewable and Sustainable Energy Reviews from Elsevier
Bibliographic data for series maintained by Catherine Liu ().