EconPapers    
Economics at your fingertips  
 

An overview on comparative engine performance and emission characteristics of different techniques involved in diesel engine as dual-fuel engine operation

M.J. Abedin, A. Imran, H.H. Masjuki, M.A. Kalam, S.A. Shahir, M. Varman and A.M. Ruhul

Renewable and Sustainable Energy Reviews, 2016, vol. 60, issue C, 306-316

Abstract: Abatement of pollutant emissions from transport sector is one of the major concerns throughout the globe. One of the main technical challenges for transportation sector is to reduce pollutant emissions from diesel engine and to meet satisfactory engine performance, simultaneously. Different technical changes have been introduced in diesel engine to apply alternative biofuels to reduce pollutant emissions. Blend, fumigation, and emulsion are three different dual fuel engine operation techniques, which have been introduced in diesel engine for biofuel application. In the blend mode, biofuel and diesel are mixed in desired proportions before injecting into cylinder, whereas in fumigation mode, biofuel is injected into intake manifold to mix with the intake fresh air. Emulsion is a process wherein two immiscible substances are mixed together. This study provides a comprehensive review on these three techniques of biofuel injection and their comparative effects on the engine performance and emissions. From these studies, it is found that the effects on engine performance and emission mostly depend on biofuel properties. Increase in break specific fuel consumption (BSFC) is common in each method due to the lower calorific value of biofuels. Brake thermal efficiency (BTE) decreases in blend and fumigation modes, but increases in emulsion mode. Nitrogen oxides (NOx) emissions decrease in fumigation and emulsion modes, but increase in blend mode. Carbon monoxide (CO) and Hydro carbon (HC) emissions increase in fumigation and emulsion modes, but decrease in blend mode. Particulate Matter (PM) emission decreases in all three modes.

Keywords: Blend fumigation; Emulsion; Dual fuel technique; Diesel engine; Performance; Emission (search for similar items in EconPapers)
Date: 2016
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (15)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S1364032116001489
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:rensus:v:60:y:2016:i:c:p:306-316

Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/bibliographic
http://www.elsevier. ... 600126/bibliographic

DOI: 10.1016/j.rser.2016.01.118

Access Statistics for this article

Renewable and Sustainable Energy Reviews is currently edited by L. Kazmerski

More articles in Renewable and Sustainable Energy Reviews from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:rensus:v:60:y:2016:i:c:p:306-316