Identifying the most significant input parameters for predicting global solar radiation using an ANFIS selection procedure
Kasra Mohammadi,
Shahaboddin Shamshirband (),
Amirrudin Kamsin,
Pc Lai and
Zulkefli Mansor
Renewable and Sustainable Energy Reviews, 2016, vol. 63, issue C, 423-434
Abstract:
There are several variables that influence the global solar radiation (GSR) prediction; thus, determining the most significant parameters is an important task to achieve accurate predictions. In this paper, adaptive neuro-fuzzy inference system (ANFIS) is employed to identify the most relevant parameters for prediction of daily GSR. Three cities of Isfahan, Kerman and Tabass distributed in central and south central parts of Iran are considered as case studies. The ANFIS process for variable selection includes evaluating several combinations of input parameters for three cases with 1, 2 and 3 inputs to recognize the most relevant sets. To achieve this, nine parameters of sunshine duration (n), maximum possible sunshine duration (N), minimum, maximum and average air temperatures (Tmin, Tmax and Tavg), relative humidity (Rh), water vapor pressure (VP), sea level pressure (P) and extraterrestrial radiation (Ho) are considered. The results reveal that an optimum sets of inputs are not identical for all cities due to difference in climate conditions and solar radiation characteristics. According to the results, considering the most relevant combinations of 2 input parameters is the more appropriate option for all cities to achieve more accuracy and less complexity in predictions. The survey results emphasize the importance of appropriate selection of input parameters to predict daily GSR. Such suitable, simple and accurate prediction is profitable to properly design and evaluate the performance of solar energy systems, which subsequently leads to technical and economic benefits.
Keywords: Daily global solar radiation; ANFIS; Variable selection; Prediction; Solar energy systems (search for similar items in EconPapers)
Date: 2016
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (16)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S1364032116301770
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:rensus:v:63:y:2016:i:c:p:423-434
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/bibliographic
http://www.elsevier. ... 600126/bibliographic
DOI: 10.1016/j.rser.2016.05.065
Access Statistics for this article
Renewable and Sustainable Energy Reviews is currently edited by L. Kazmerski
More articles in Renewable and Sustainable Energy Reviews from Elsevier
Bibliographic data for series maintained by Catherine Liu ().