EconPapers    
Economics at your fingertips  
 

Progress in plasmonic solar cell efficiency improvement: A status review

P. Mandal and S. Sharma

Renewable and Sustainable Energy Reviews, 2016, vol. 65, issue C, 537-552

Abstract: Solar cell efficiency improvement has been one of the major concerns to realize ultimately the cost effective efficient solar cells. Among various ways to improve solar cell efficiency, plasmonic light trapping mechanism has been found to be of immense interests recently. The mechanism of strong scattering into the active materials and guiding of light at the excitation of plasmons at the metal-semiconductor interface play significant role for better photon harvesting. The present review concentrates on the recent advances on the application of plasmonics in inorganic semiconductor solar cell efficiency improvements. Various research groups active in this field have employed various metal nanostructures on to the surface of solar cells to achieve higher efficiency. This review partially also concentrates on surface nanopatterning of solar cells with nonmetallic dielectrics. Finally, a brief account on the dye-sensitized solar cell is presented to show the potential of plasmonics in solar cell research.

Keywords: Review; Plasmonic solar cells; Surface patterning; Surface plasmon; Dye-sensitized solar cells (search for similar items in EconPapers)
Date: 2016
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (5)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S1364032116303598
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:rensus:v:65:y:2016:i:c:p:537-552

Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/bibliographic
http://www.elsevier. ... 600126/bibliographic

DOI: 10.1016/j.rser.2016.07.031

Access Statistics for this article

Renewable and Sustainable Energy Reviews is currently edited by L. Kazmerski

More articles in Renewable and Sustainable Energy Reviews from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:rensus:v:65:y:2016:i:c:p:537-552