A comprehensive review of thermoelectric technology: Materials, applications, modelling and performance improvement
Ssennoga Twaha,
Jie Zhu,
Yuying Yan and
Bo Li
Renewable and Sustainable Energy Reviews, 2016, vol. 65, issue C, 698-726
Abstract:
Thermoelectric (TE) technology is regarded as alternative and environmentally friendly technology for harvesting and recovering heat which is directly converted into electrical energy using thermoelectric generators (TEG). Conversely, Peltier coolers and heaters are utilised to convert electrical energy into heat energy for cooling and heating purposes The main challenge lying behind the TE technology is the low efficiency of these devices mainly due to low figure of merit (ZT) of the materials used in making them. The objective of this work is to carry out a comprehensive review of TE technology encompassing the materials, applications, modelling techniques and performance improvement. The paper has covered a wide range of topics related to TE technology subject area including the output power conditioning techniques. It is observed that the intensified research into TE technology has led to an outstanding increase in ZT, rendering the use TE devices in diversified application a reality. The performance improvements of TE devices have been mainly contributed by improved TE material research, TE device geometrical adjustments, design of integrated TE devices as well as the use of advanced TE mathematical models which have facilitated appropriate segmentation of TE modules using different materials. TE devices are observed to have booming applications in cooling, heating, electric power generation as well as hybrid applications. With the generation of electrical energy using TEG, not only does the waste heat provide heat source but also other energy sources like solar, geothermal, biomass, infra-red radiation have gained increased utilization in TE based systems. However, the main challenge remains in striking the balance between the conflicting parameters; ZT and power factor, when designing and optimizing advanced TE materials. Hence more research is necessary to overcome this and other challenge so that the performance TE device can be improved further.
Keywords: Heating; Cooling; TEG/TEC materials; TEG Structures; TEG Modelling; TEG/TEC performance improvement (search for similar items in EconPapers)
Date: 2016
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (52)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S1364032116303653
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:rensus:v:65:y:2016:i:c:p:698-726
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/bibliographic
http://www.elsevier. ... 600126/bibliographic
DOI: 10.1016/j.rser.2016.07.034
Access Statistics for this article
Renewable and Sustainable Energy Reviews is currently edited by L. Kazmerski
More articles in Renewable and Sustainable Energy Reviews from Elsevier
Bibliographic data for series maintained by Catherine Liu ().