A review on unitized regenerative fuel cell technologies, part-A: Unitized regenerative proton exchange membrane fuel cells
Yifei Wang,
Dennis Y.C. Leung,
Jin Xuan and
Huizhi Wang
Renewable and Sustainable Energy Reviews, 2016, vol. 65, issue C, 961-977
Abstract:
Energy storage and conversion is a very important link between the steps of energy production and energy consumption. Traditional fossil fuels are natural and unsustainable energy storage medium with limited reserves and notorious pollution problems, therefore demanding for a better choice to store and utilize the green and renewable energies in the future. Unitized regenerative fuel cell (URFC), a compact version of regenerative fuel cell with only one electrochemical cell, is one of the competent technologies for this purpose. A URFC can produce hydrogen fuel through an electrolysis mode to store the excess energy, and output power in a fuel cell mode to meet different consumption requirements. Such a reversible system possesses several distinctive advantages such as high specific energy, pollution-free, and most importantly, the decoupled energy storage capacity with rated power. Based on the different electrolytes utilized, current available URFC technologies include the most common proton exchange membrane (PEM)-based URFC, and other types of URFC such as the alkaline, solid oxide and microfluidic URFCs. This part of the URFC review emphasizes on the PEM-based URFC. Specifically, the research progress on both cell components and systematic issues is introduced. Benefiting from its fairly mature technology stage, the PEM-based URFC has already been applied in aerospace and terrestrial areas. However, for large-scale application, their cost and efficiency are still the obstacles when competing with other energy storage technologies. As for the alkaline, solid oxide and microfluidic types of URFC, their research progress is reported independently in part B of this review.
Keywords: Unitized regenerative fuel cell; Proton exchange membrane; Bifunctional catalyst; Gas diffusion layer; Bipolar plates; Practical applications (search for similar items in EconPapers)
Date: 2016
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (19)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S1364032116303628
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:rensus:v:65:y:2016:i:c:p:961-977
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/bibliographic
http://www.elsevier. ... 600126/bibliographic
DOI: 10.1016/j.rser.2016.07.046
Access Statistics for this article
Renewable and Sustainable Energy Reviews is currently edited by L. Kazmerski
More articles in Renewable and Sustainable Energy Reviews from Elsevier
Bibliographic data for series maintained by Catherine Liu ().