Fluid-structure interactions in Francis turbines: A perspective review
Chirag Trivedi and
Michel J. Cervantes
Renewable and Sustainable Energy Reviews, 2017, vol. 68, issue P1, 87-101
Abstract:
Competitive electricity prices and reduced profit margins have forced hydraulic turbines to operate under critical conditions. The demand for extended operating ranges and the high efficiency of the turbine runners have forced manufacturers to produce lightweight runners. A turbine runner sometimes experiences resonance when a forced (flow-induced) excitation frequency approaches the runner’s natural frequency, resulting in failure. The cost of structural failure after commissioning is prohibitive. To attain a reliable and safe runner design, understanding of the structural response to flow-induced excitations is important. High amplitude pressure pulsations cause fatigue loading of the blades, which develop cracks over time. The amplitudes are dependent on the flow conditions, type of turbine and stator/rotor vane combinations. The structural response is dependent on the material properties, flow-induced damping and natural frequencies. Moreover, in a hydraulic turbine, changes in flow velocity from less than 1ms−1 to over 40ms−1 create challenges in predicting the response.
Keywords: Design; Fatigue; Flow; Fluid-structure interaction; Francis turbine; Numerical modeling; Pressure; Vibration (search for similar items in EconPapers)
Date: 2017
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (17)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S1364032116306335
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:rensus:v:68:y:2017:i:p1:p:87-101
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/bibliographic
http://www.elsevier. ... 600126/bibliographic
DOI: 10.1016/j.rser.2016.09.121
Access Statistics for this article
Renewable and Sustainable Energy Reviews is currently edited by L. Kazmerski
More articles in Renewable and Sustainable Energy Reviews from Elsevier
Bibliographic data for series maintained by Catherine Liu ().