A review on performance enhancement techniques for ambient vibration energy harvesters
Tanju Yildirim,
Mergen H. Ghayesh,
Weihua Li and
Gursel Alici
Renewable and Sustainable Energy Reviews, 2017, vol. 71, issue C, 435-449
Abstract:
Due to increased demands for energy and the current limitations of batteries, a future prospective technology are vibration energy harvesters that convert kinetic vibration energy into electrical energy. These energy harvesters have the potential to be used in powering small electronic devices such as measurement equipment in remote or hostile environments where batteries are not a viable option. Current limitations of vibration based energy harvesters is the total available power generated and the frequency at which they effectively collect ambient vibration sources for producing power; this paper aims to review the current techniques that are being employed to enhance the performance of these devices. These techniques have been categorised into amplification techniques, resonance tuning methods and introducing nonlinear oscillations. Before this technology can be used effectively in applications enhancing the performance of ambient vibration energy harvesters needs to be addressed.
Keywords: Vibration energy harvester; Energy scavenging and performance enhancement; Review; Resonance tuning; Nonlinear (search for similar items in EconPapers)
Date: 2017
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (21)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S1364032116311273
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:rensus:v:71:y:2017:i:c:p:435-449
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/bibliographic
http://www.elsevier. ... 600126/bibliographic
DOI: 10.1016/j.rser.2016.12.073
Access Statistics for this article
Renewable and Sustainable Energy Reviews is currently edited by L. Kazmerski
More articles in Renewable and Sustainable Energy Reviews from Elsevier
Bibliographic data for series maintained by Catherine Liu ().