EconPapers    
Economics at your fingertips  
 

Environmental influence and countermeasures for high humidity flue gas discharging from power plants

Ma Shuangchen, Chai Jin, Jiao Kunling, Ma Lan, Zhu Sijie and Wu Kai

Renewable and Sustainable Energy Reviews, 2017, vol. 73, issue C, 225-235

Abstract: The source of moisture in flue gas emissions from coal-fired power plant and the impact of high humidity flue gas on the environment were reviewed. Flue gas moisture from fired power plant mainly comes from the release of hydrogen in coal combustion process and water carried by flue gas from wet flue gas desulfurization system. High humidity flue gas emission increases the overall humidity in the lower atmosphere, which is not conducive to the pollutants diffusion in low atmosphere and even affect the local climate around the plant; high humidity flue gas emission promotes the secondary transformation of air pollutants as well, accelerating the hygroscopic aerosol growth, thus aerosol optical characteristics is changed, and atmospheric visibility reduces. As for the power plant itself, high humidity flue gas emission will cause the increase of water consumption, and take away too much latent heat of vaporization, which is adverse to water conservation and heat reuse. High humidity flue gas and other acidic gases such as SO3 cause low-temperature corrosion of flue at the end of boiler, shortening the operation span of equipment. High humidity flue gas also produces "gypsum rain" after the wet flue gas desulfurization, which is harmful to the surrounding environment. Through research and analysis for high humidity flue gas emission from domestic and foreign coal fired power plants, the authors believe that a significant increase in the relative humidity and a large number of sub-micron particles discharging due to high humidity flue gas emission throughout the lower atmosphere may contribute to continuous smog, thus the quantitative study about the contribution of high humidity to smog is the next focus for the research of high humidity flue gas emission.

Keywords: Flue gas moisture; Relative humidity; Environmental impact; Smog (search for similar items in EconPapers)
Date: 2017
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (4)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S1364032117301533
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:rensus:v:73:y:2017:i:c:p:225-235

Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/bibliographic
http://www.elsevier. ... 600126/bibliographic

DOI: 10.1016/j.rser.2017.01.143

Access Statistics for this article

Renewable and Sustainable Energy Reviews is currently edited by L. Kazmerski

More articles in Renewable and Sustainable Energy Reviews from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:rensus:v:73:y:2017:i:c:p:225-235