EconPapers    
Economics at your fingertips  
 

Integration of Demand and Supply Side Management strategies in Generation Expansion Planning

K. Karunanithi, S. Saravanan, B.R. Prabakar, S. Kannan and C. Thangaraj

Renewable and Sustainable Energy Reviews, 2017, vol. 73, issue C, 966-982

Abstract: Electric utilities across the globe concerned with environmental issues associated with conventional fossil fuel based plants are exploring more into the possibility of introducing Renewable Energy Sources (RES) type of plants into the system as an alternative. A realistic power system planning needs integration of both Demand Side Management (DSM) and Supply Side Management (SSM) that which involve simultaneous consideration of both quantitative and qualitative issues like plant mix, costs and reliability of power supply. In this paper, an attempt is made to study the economic and environmental influence of RES introduction into an existing peak deficit power system, in the state of Tamil Nadu (TN), India, using the Long-Range Energy Alternative Planning system (LEAP) an energy-economic model, integrating both DSM and SSM strategies. The Generation Expansion Planning (GEP) study is carried out for TN power system for the period of thirty years from 2014 to 2043. The Base System Analyses (BSA) carried out was indicative of differential impact of RES levels and Reserve Margin on the system performance. Based on the BSA, an extended three dimensional sensitivity analysis was performed to get a comprehensive picture of the impact of variations in RES and Reserve Margin planned on system performance factors such as, Total Installed Capacity (TIC), Net Present Value (NPV) of investments, reliability of the system (ENS-Energy Not Served), one hundred year global warming potential (CO2E) and Flexibility Index (FI) for every DSM and SSM strategy planned. While TIC and NPV were more sensitive to changes in Reserve Margin (RM) than RES penetrations levels, the CO2E and FI were more sensitive to RES penetration levels. The ENS was sensitive to both RM and RES levels. The results also indicate that simultaneous implementation of DSM and SSM strategies could result in the reduction of as much as 10% in TIC, 18% in NPV, 23% in CO2E, 18% in ENS and 20% improvement in FI value.

Keywords: Demand Side Management; Energy planning; Flexibility index; Generation Expansion Planning; Peak deficit system; Renewable Energy Technologies; Supply Side Management (search for similar items in EconPapers)
Date: 2017
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (19)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S1364032117300187
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:rensus:v:73:y:2017:i:c:p:966-982

Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/bibliographic
http://www.elsevier. ... 600126/bibliographic

DOI: 10.1016/j.rser.2017.01.017

Access Statistics for this article

Renewable and Sustainable Energy Reviews is currently edited by L. Kazmerski

More articles in Renewable and Sustainable Energy Reviews from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:rensus:v:73:y:2017:i:c:p:966-982