Biodiversity impacts of bioenergy production: Microalgae vs. first generation biofuels
Diego F. Correa,
Hawthorne L. Beyer,
Hugh P. Possingham,
Skye R. Thomas-Hall and
Peer M. Schenk
Renewable and Sustainable Energy Reviews, 2017, vol. 74, issue C, 1131-1146
Abstract:
Energy and fuel demands, which are currently met primarily using fossil fuels, are expected to increase substantially in the coming decades. Burning fossil fuels results in the increase of net atmospheric CO2 and climate change, hence there is widespread interest in identifying sustainable alternative fuel sources. Biofuels are one such alternative involving the production of biodiesel and bioethanol from plants. However, the environmental impacts of biofuels are not well understood. First generation biofuels (i.e. those derived from edible biomass including crops such as maize and sugarcane) require extensive agricultural areas to produce sufficient quantities to replace fossil fuels, resulting in competition with food production, increased land clearing and pollution associated with agricultural production and harvesting. Microalgal production systems are a promising alternative that suffer from fewer environmental impacts. Here, we evaluate the potential impacts of microalgal production systems on biodiversity compared to first generation biofuels, through a review of studies and a comparison of environmental pressures that directly or indirectly impact biodiversity. We also compare the cultivation area required to meet gasoline and distillate fuel oil demands globally, accounting for spatial variation in productivity and energy consumption. We conclude that microalgal systems exert fewer pressures on biodiversity per unit of fuel generated compared to first generation biofuels, mainly because of reductions in direct and indirect land-use change, water consumption if water is recycled, and no application of pesticides. Further improvements of technologies and production methods, including optimization of productivities per unit area, colocation with wastewater systems and industrial CO2 sources, nutrient and water recycling and use of coproducts for internal energy generation, would further increase CO2 savings. Overall pollution reductions can be achieved through increased energy efficiencies, along with nutrient and water recycling. Microalgal systems provide strong potential for helping in meeting global energy demands sustainably.
Keywords: Biofuel crops; Ecological footprint; Land-use change; Life cycle assessment; Tropic; Vertebrate (search for similar items in EconPapers)
Date: 2017
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (15)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S1364032117302691
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:rensus:v:74:y:2017:i:c:p:1131-1146
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/bibliographic
http://www.elsevier. ... 600126/bibliographic
DOI: 10.1016/j.rser.2017.02.068
Access Statistics for this article
Renewable and Sustainable Energy Reviews is currently edited by L. Kazmerski
More articles in Renewable and Sustainable Energy Reviews from Elsevier
Bibliographic data for series maintained by Catherine Liu ().