A review of photovoltaic module technologies for increased performance in tropical climate
Osarumen O. Ogbomo,
Emeka H. Amalu,
N.N. Ekere and
P.O. Olagbegi
Renewable and Sustainable Energy Reviews, 2017, vol. 75, issue C, 1225-1238
Abstract:
The global adoption and use of photovoltaic modules (PVMs) as the main source of energy is the key to realising the UN Millennium Development Goals on Green Energy. The technology – projected to contribute about 20% of world energy supply by 2050, over 60% by 2100 and leading to 50% reduction in global CO2 emissions – is threatened by its poor performance in tropical climate. Such performance discourages its regional acceptance. The magnitude of crucial module performance influencing factors (cell temperature, wind speed and relative humidity) reach critical values of 90°C, 0.2m/s and 85%, respectively in tropical climates which negatively impact module performance indices which include power output (PO), power conversion efficiency (PCE) and energy payback time (EPBT). This investigation reviews PVM technologies which include cell, contact and interconnection technologies. It identifies critical technology route(s) with potential to increase operational reliability of PVMs in the tropics when adopted. The cell performance is measured by PO, PCE and EPBT while contacts and interconnections performance is measured by the degree of recombination, shading losses and also the rate of thermo-mechanical degradation. It is found that the mono-crystalline cell has the best PCE of 25% while the Cadmium Telluride (CdTe) cell has the lowest EPBT of 8-months. Results show that the poly-crystalline cell has the largest market share amounting to 54%. The CdTe cell exhibits 0% drop in PCE at high-temperatures and low irradiance operations – demonstrating least affected PO by the conditions. Further results establish that back contacts and back-to-back interconnection technologies produce the least recombination losses and demonstrate absence of shading in addition to possessing longest interconnection fatigue life. Based on these findings, the authors propose a PVM comprising CdTe cell, back contacts and back-to-back interconnection technologies as the technology with latent capacity to produce improved performance in tropical climates.
Keywords: Photovoltaic modules; Solar cell technology; Contact technology; Interconnection technology; Energy payback time; Power conversion efficiency; Fatigue life (search for similar items in EconPapers)
Date: 2017
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (10)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S1364032116308152
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:rensus:v:75:y:2017:i:c:p:1225-1238
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/bibliographic
http://www.elsevier. ... 600126/bibliographic
DOI: 10.1016/j.rser.2016.11.109
Access Statistics for this article
Renewable and Sustainable Energy Reviews is currently edited by L. Kazmerski
More articles in Renewable and Sustainable Energy Reviews from Elsevier
Bibliographic data for series maintained by Catherine Liu ().