EconPapers    
Economics at your fingertips  
 

A review of unsupervised statistical learning and visual analytics techniques applied to performance analysis of non-residential buildings

Clayton Miller, Zoltán Nagy and Arno Schlueter

Renewable and Sustainable Energy Reviews, 2018, vol. 81, issue P1, 1365-1377

Abstract: Measured and simulated data sources from the built environment are increasing rapidly. It is becoming normal to analyze data from hundreds, or even thousands of buildings at once. Mechanistic, manual analysis of such data sets is time-consuming and not realistic using conventional techniques. Thus, a significant body of literature has been generated using unsupervised statistical learning techniques designed to uncover structure and information quickly with fewer input parameters or metadata about the buildings collected. Further, visual analytics techniques are developed as aids in this process for a human analyst to utilize and interpret the results. This paper reviews publications that include the use of unsupervised machine learning techniques as applied to non-residential building performance control and analysis. The categories of techniques covered include clustering, novelty detection, motif and discord detection, rule extraction, and visual analytics. The publications apply these technologies in the domains of smart meters, portfolio analysis, operations and controls optimization, and anomaly detection. A discussion is included of key challenges resulting from this review, such as the need for better collaboration between several, disparate research communities and the lack of open, benchmarking data sets. Opportunities for improvement are presented including methods of reproducible research and suggestions for cross-disciplinary cooperation.

Keywords: Building performance analysis; Data mining; Unsupervised learning; Visual analytics; Clustering; Novelty detection; Smart meter analysis; Portfolio analysis; Review; Building controls and optimization (search for similar items in EconPapers)
Date: 2018
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (18)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S1364032117307608
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:rensus:v:81:y:2018:i:p1:p:1365-1377

Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/bibliographic
http://www.elsevier. ... 600126/bibliographic

DOI: 10.1016/j.rser.2017.05.124

Access Statistics for this article

Renewable and Sustainable Energy Reviews is currently edited by L. Kazmerski

More articles in Renewable and Sustainable Energy Reviews from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:rensus:v:81:y:2018:i:p1:p:1365-1377