Economics at your fingertips  

Comparison of 100% renewable energy system scenarios with a focus on flexibility and cost

Wesley Deason

Renewable and Sustainable Energy Reviews, 2018, vol. 82, issue P3, 3168-3178

Abstract: In this study, a particular class of energy system scenarios assuming 100% renewable energy (RE) are selected and compared. The purpose is to compare the relative characteristics of the scenarios, focusing on the amount and types of flexibility used and the predicted electricity generation cost. The approach included the screening of 45 studies (some of which contained multiple scenarios) to down-select to 8 studies, which used high-fidelity short-term energy system models. The compared scenarios applied many strategies for providing flexibility, which was found to be a crucial and significant component of a 100% RE system. Accordingly, only two of the fifteen examined scenarios contained a variable generation fraction greater than 65% of total scenario capacity (73% and 69%). Predicted electricity costs varied drastically in all regions. Some studies provided multiple scenarios (including business-as-usual scenarios and costs) that could be compared. In 3 out of the 4 studies including a business-as-usual cost, the 100% RE scenarios were found to be between 41% and 104% more expensive. The fourth study showed electricity costs to be the same for a 100% RE system and business-as-usual system, and the 100% RE system to be 62% cheaper when externalities are included.

Keywords: Energy system flexibility; Energy system modeling; High-penetration renewable energy systems (search for similar items in EconPapers)
Date: 2018
References: View references in EconPapers View complete reference list from CitEc
Citations View citations in EconPapers (1) Track citations by RSS feed

Downloads: (external link)
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link:

Ordering information: This journal article can be ordered from
http://www.elsevier. ... 600126/bibliographic

Access Statistics for this article

Renewable and Sustainable Energy Reviews is currently edited by L. Kazmerski

More articles in Renewable and Sustainable Energy Reviews from Elsevier
Bibliographic data for series maintained by Dana Niculescu ().

Page updated 2018-06-23
Handle: RePEc:eee:rensus:v:82:y:2018:i:p3:p:3168-3178