Economics at your fingertips  

Tandem perovskite solar cells

Qamar Wali, Naveen Kumar Elumalai, Yaseen Iqbal, Ashraf Uddin and Rajan Jose

Renewable and Sustainable Energy Reviews, 2018, vol. 84, issue C, 89-110

Abstract: Progress made in perovskite solar cells (PSCs) in tandem with silicon, thin films, and organic solar cells has been reviewed. Tandem configurations are comprised of two or more cells and are designed to absorb the entire range of the solar light by the successive cells. Such configurations are considered as the most sought-after remedies to generate cheaper solar electricity by increasing the efficiency beyond the theoretical limits of single junction cells. The current market leader i.e. state of the art single junction silicon solar cells have a laboratory scale efficiency ~ 25% achieved as a result of the over 60 years of research. Further research is expected to enhance their efficiency close to the theoretical limits. PSCs may be the next desired choice as the top solar cell due to its higher absorption edge (~ 2.23eV) in comparison to its Si counterpart (~ 1.48eV). Beginning with a brief introduction of the PSC, studies regarding its suitability for tandem devices, comparison of single and multiple junction solar cells, and the progress made so far employing different perovskite absorbers, have been reviewed. The advantages and disadvantages of PSCs, including losses of various tandem solar architectures have been discussed. Finally, the review has been concluded with a summary of the current developments and commercialization potential of this technology for real-life applications.

Keywords: Multijunction solar cells; Renewable energy; Optical losses; Band gap alignment (search for similar items in EconPapers)
Date: 2018
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1) Track citations by RSS feed

Downloads: (external link)
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link:

Ordering information: This journal article can be ordered from
http://www.elsevier. ... 600126/bibliographic

Access Statistics for this article

Renewable and Sustainable Energy Reviews is currently edited by L. Kazmerski

More articles in Renewable and Sustainable Energy Reviews from Elsevier
Bibliographic data for series maintained by Dana Niculescu ().

Page updated 2019-08-24
Handle: RePEc:eee:rensus:v:84:y:2018:i:c:p:89-110