Recent advances in alkali-doped polybenzimidazole membranes for fuel cell applications
Q.X. Wu,
Z.F. Pan and
L. An
Renewable and Sustainable Energy Reviews, 2018, vol. 89, issue C, 168-183
Abstract:
Polybenzimidazole (PBI), with a well-known excellent thermal stability, has been recognized as an alternative for anion exchange membrane fuel cells (AEMFC), primarily because it can serve as an ionic conductor after doping with inorganic hydroxides (typically KOH/NaOH) and thus allows fuel cells to be operated at high temperatures (currently as high as 120 °C). In addition, alkali-doped PBI membranes also offer many other favored physiochemical properties, such as high ionic conductivity. The objective of this article is to provide a review of recent research on the alkali-doped PBI membranes and their applications in fuel cells, including mechanisms of ion conduction through the alkali-doped PBI membranes, stability of the PBI membranes doped with alkali, strategies aiming at improving the ionic conductivity of the PBI membranes doped with alkali, as well as the performance of alkali-doped PBI membrane based fuel cells. Additionally, future perspectives relating to the development of alkali-doped PBI membranes and their applications in fuel cells are also highlighted.
Keywords: Fuel cells; Anion exchange membrane fuel cells; Polybenzimidazole; Alkali-doped PBI membranes; Physiochemical properties; Single-cell performance (search for similar items in EconPapers)
Date: 2018
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (5)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S1364032118301114
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:rensus:v:89:y:2018:i:c:p:168-183
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/bibliographic
http://www.elsevier. ... 600126/bibliographic
DOI: 10.1016/j.rser.2018.03.024
Access Statistics for this article
Renewable and Sustainable Energy Reviews is currently edited by L. Kazmerski
More articles in Renewable and Sustainable Energy Reviews from Elsevier
Bibliographic data for series maintained by Catherine Liu ().