Overview of solar technologies for electricity, heating and cooling production
Jessica Settino,
Tonio Sant,
Christopher Micallef,
Mario Farrugia,
Cyril Spiteri Staines,
John Licari and
Alexander Micallef
Renewable and Sustainable Energy Reviews, 2018, vol. 90, issue C, 892-909
Abstract:
The efficient use of local renewable energy sources is a key factor to reach the EU's targets on climate change and renewable energy. In this review, the available technologies to convert solar energy into electrical and thermal energy are investigated. Photovoltaic panels, thermal collectors, heat pumps, solar cooling and energy storage systems are analyzed with a particular attention to their market availability for small-scale applications. Different ways to provide heating, cooling and sanitary hot water from solar source are analyzed and compared from an efficiency, economic and environmental perspective.
Keywords: Solar renewable energy systems; Thermal energy storage; Batteries; Cost analysis; Environmental impact; Efficiency (search for similar items in EconPapers)
Date: 2018
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (20)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S1364032118301941
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:rensus:v:90:y:2018:i:c:p:892-909
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/bibliographic
http://www.elsevier. ... 600126/bibliographic
DOI: 10.1016/j.rser.2018.03.112
Access Statistics for this article
Renewable and Sustainable Energy Reviews is currently edited by L. Kazmerski
More articles in Renewable and Sustainable Energy Reviews from Elsevier
Bibliographic data for series maintained by Catherine Liu ().