Economics at your fingertips  

Molybdenum carbide nanoparticle: Understanding the surface properties and reaction mechanism for energy production towards a sustainable future

Peter Adeniyi Alaba, Ali Abbas, Jun Huang and Wan Mohd Ashri Wan Daud

Renewable and Sustainable Energy Reviews, 2018, vol. 91, issue C, 287-300

Abstract: Rational design and synthesis of cheap, noble metal-free, thermal/hydrothermal stable and active catalyst for efficient hydrogenation and hydrogen production reaction is crucial towards renewable and sustainable energy generation. This gives the use of molybdenum carbide nanoparticle considerable attention as an alternative to noble metals. However, the industrial application is not yet feasible due to insufficient stability and activity coupled with the lack of detailed understanding of the reaction mechanism. This work discusses the effect of the operating parameters on the properties and morphology of molybdenum carbide nanoparticle, as well as their impact on the catalytic activity. Critical issues such as structural diversity, surface properties, and multiscale reaction modeling are also discussed for better understanding of the reaction mechanism. This is a promising strategy towards synthesis of cost-effective and efficient catalysts for renewable and sustainable energy production.

Keywords: Molybdenum carbide nanoparticle; Hydrogenation; Hydrogen evolution reaction; Extreme learning machine; Multiscale (search for similar items in EconPapers)
Date: 2018
References: View references in EconPapers View complete reference list from CitEc
Citations Track citations by RSS feed

Downloads: (external link)
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link:

Ordering information: This journal article can be ordered from
http://www.elsevier. ... 600126/bibliographic

Access Statistics for this article

Renewable and Sustainable Energy Reviews is currently edited by L. Kazmerski

More articles in Renewable and Sustainable Energy Reviews from Elsevier
Bibliographic data for series maintained by Dana Niculescu ().

Page updated 2018-08-04
Handle: RePEc:eee:rensus:v:91:y:2018:i:c:p:287-300