Molybdenum carbide nanoparticle: Understanding the surface properties and reaction mechanism for energy production towards a sustainable future
Peter Adeniyi Alaba,
Ali Abbas,
Jun Huang and
Wan Mohd Ashri Wan Daud
Renewable and Sustainable Energy Reviews, 2018, vol. 91, issue C, 287-300
Abstract:
Rational design and synthesis of cheap, noble metal-free, thermal/hydrothermal stable and active catalyst for efficient hydrogenation and hydrogen production reaction is crucial towards renewable and sustainable energy generation. This gives the use of molybdenum carbide nanoparticle considerable attention as an alternative to noble metals. However, the industrial application is not yet feasible due to insufficient stability and activity coupled with the lack of detailed understanding of the reaction mechanism. This work discusses the effect of the operating parameters on the properties and morphology of molybdenum carbide nanoparticle, as well as their impact on the catalytic activity. Critical issues such as structural diversity, surface properties, and multiscale reaction modeling are also discussed for better understanding of the reaction mechanism. This is a promising strategy towards synthesis of cost-effective and efficient catalysts for renewable and sustainable energy production.
Keywords: Molybdenum carbide nanoparticle; Hydrogenation; Hydrogen evolution reaction; Extreme learning machine; Multiscale (search for similar items in EconPapers)
Date: 2018
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S1364032118301965
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:rensus:v:91:y:2018:i:c:p:287-300
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/bibliographic
http://www.elsevier. ... 600126/bibliographic
DOI: 10.1016/j.rser.2018.03.106
Access Statistics for this article
Renewable and Sustainable Energy Reviews is currently edited by L. Kazmerski
More articles in Renewable and Sustainable Energy Reviews from Elsevier
Bibliographic data for series maintained by Catherine Liu ().